Volume List  / Volume 12 (1)

Article

HOW TO PLAN INTERACTION OF TRANSPORT NETWORK AND RESIDENTIAL SPACE IN AN URBAN ENVIRONMENT: CASE OF BATNA CITY

DOI: 10.7708/ijtte2022.12(1).02


12 / 1 / 21 - 34 Pages

Author(s)

Haddad Louiza - Laboratory of natural hazards and territorial planning, University Batna2, Algeria -

Aouachria Zeroual - Applied Energy Physics Laboratory (LPEA), University Batna1, Algeria -


Abstract

The main purpose of this work is to show how to optimize the use of urban soils in conjunction with its transportation network to save residential areas from the air pollution generated by vehicles. The model evokes the spatial elements and problems necessary for the representation of the urban environment with precision in the development of residential land use. This model also predicts the degree of pollution of already existing residential areas. The approach is based on the minimum distance between the road and the residential area for which the air quality remains acceptable for human health. The mathematical analysis will allow a better planning of the urban transport network. The effect and impact of the transport network on urban air quality is presented based on geo-spatial analyzes. The results will help to reduce the negative impacts of transport on the air quality, particularly in the urban domain. Through this mathematical modelling, sustainable development will be achieved by defining the residential zone that will be spared from pollution due to the transport network and delimit the polluted part of the already existing zone. The solution adopted is to show how the soil must be exploited with regards to the transport network and residential areas.


Download Article

Number of downloads: 248


References:

Bell, M. C.; Blake, M. 2000. Forecasting the Pattern of Urban Growth with PUP: a Web-based Model Interfaced with GIS and 3D Animation, Journal of Environment and Urban Systems 24(6): 559-581.

 

Boulanger, A.G.; Chu A.C.; Max S.; Waltz D., 2014. Vehicle electrification: status and issues. In Proceedings of the IEEE, 99(6):1116–1138.

 

Boulanger, G.M. 2014. Reducing carbon emissions by introducing electric vehicle enhanced dedicated bus lanes. In Proceedings of the 2014 IEEE intelligent vehicles symposium, Dearborn, 1011–1016.

 

Chan, L.Y.; Lau, W.L.; Zou, S.C.; Cao, Z.X.; Lai, S.C. 2002. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China, Atmospheric Environment 36(38): 5831–5840. doi: 10.1016/S1352-2310(02)00687-8.

 

Colvile, R.N.; Hutchinson, E.J.; Mindell, J.S.; Warren, R.F. 2001. The transport sector as a source of air pollution, Atmospheric Environment 35(9): 1537–1565. https://doi.org/10.1016/S1352-2310(00)00551-3.

 

Comrie, A.C.; Diem, J.E. 1999. Climatology and forecast modelling of ambient carbon monoxide in Phoenix Arizona, Atmospheric Environment 33(30): 5023–5036. doi: 10.1016/S1352-2310(99) 00314-3.

 

Department of Transport. 1996. Transport Statistics Great Britain. UK. Dorling, D.; Pritchard J. 2010. The Geography of Poverty, Inequality and Wealth in the UK and Abroad: Because enough is Never Enough, Applied Spatial Analysis and Policy 3(2): 81–106. doi: 10.1007/s12061-009-9042-8.

 

Faiz, A.; Sturm, P.J. 2000. New directions: Air pollution and road traffic in developing countries, Atmospheric Environment 34(27): 4745–4746. doi:10.1016/S1352-2310 (00).

 

Fenton, P.; Gustafsson S. 2017. Moving from high-level words to local action-governance for urban sustainability in municipalities, Current Opinion in Environmental Sustainability 26: 129–133. doi: 10.1016/j.cosust.2017.07.009.

 

Gauderman, W.J.; Avol, E.; Lurmann, F.; Kuenzli, N.; Gilliland, F.; Peters, J.; McConnell, R. 2005. Childhood asthma and exposure to traffic and nitrogen dioxide, Epidemiology 16: 737-743.

 

Gzar, H. A. Kseer, K. M. 2009. Pollutants emission and dispersion from flares: A gaussian case–study in Iraq, Al-Nahrain Journal of Science 12(4): 38-57.

 

Haddad, L.; Aouachria, Z.; Haddad, D. 2015. Impact of the transport on the urban heat island, International journal for traffic and transport engineering 5(3): 252 - 263. doi: 10.7708/ijtte.2015.5(3).03.

 

Hadipour, M.; Pourebrahim, S.; Mahmmu, A.R. 2009. Mathematical modelling considering air pollution of transportation: an urban environmental planning, case study in Petaling Jaya, Malaysia, Theoretical and Empirical Researches in Urban Management 4(13): 75-92.

 

Haughton, G.; Hunter, C. 2003. Sustainable Cities. Rutledge publisher, 1st edition, UK. 368p. Hoffmann, B.; Moebus, S.; Stang, A.; Beck, E.M.; Dragano, N.; Mohlenkamp, S.; et al. 2006. Residence close to high traffic and prevalence of coronary heart disease, European Heart Journal 27(22): 2696-2702.

 

Host, S. 2013. Exposition à la pollution atmosphérique liée au trafic routier et risques sanitaires [In English: Exposure to air pollution linked to road traffic and health risks], VertigO – la revue électronique en sciences de l'environnement [consulté le 21 juin 2013. http://vertigo.revues.org/12816].

 

Jafarmadar, S.; Nezhad, A. S. 2015. Pollutant’s emission and dispersion from elevated, gas flare: c.s. of Aghajary, J. of Industrial Pollution Control 31(2) 323-331.

 

Jaworski, A.; Lejda, K.; Madziel, M. 2017. Emission of Pollution from Motor Vehicles with Respect to Selected Solutions of Round about Intersections, Combustion Engines 168: 140-144.

 

Kohler, M.U.; Corsmeier, U.; Vogt, U.; Vogel, B. 2005. Estimation of gaseous real world traffic emissions downstream a motorway, Atmospheric Environment 39(31): 5665–5684. doi:10.1016/j.atmosenv.2004.09.088.

 

Lacoste, O.; Spinosi, L. 2002, Distance, proximité, accessibilité, attraction et recours de la population vis-à vis du système de soins [In English: Distance, proximity, accessibility, attraction and appeal of the population to the healthcare system]. ORS Nord - Pas-de-Calais, 73 p.

 

Lindgren, A.; Stroh, P.; Montnemery, U.; Nihlen, K.; Jakobsson, A.; Axmon, A. 2009. Traffic-related air pollution associated with prevalence of asthma and copd/chronic bronchitis. A cross-sectional study in southern Sweden, International journal of health geographics, 8(1): 1-15. doi: 10.1186/1476-072X-8-2.

 

Meszaros, T.; Haszpra, L.; Gelencser, A. 2005. Tracking Changes in Carbon Monoxide, Budget over Europe between 1995 and 2000, Atmospheric Environment 39(38): 7297-7306.

 

OECD. 2013. Urban Policy Reviews, Chile. OECD Publishing. Available from Internet: https://doi.org/10.1787/23069341.

 

Petro, F.; Konecky, V. 2017. Calculation of Emission from Transport Services and Their Use for Internalisation of External Cost in Road Transport, Procedia Engineering 192: 677 – 682.

 

Ranjan, K. 2001. Development of Spatial and Attribute Database for Planning and Managing Rural Service Centres in Kendrapara District, Orissa, India: A GIS Based Information, Journal of Applied Gerontology 3(1): 99-105.

 

Turner, D. B. 1995. Atmospheric Dispersion Estimates, an Introduction to Dispersion Modelling. Lewis USA publisher, 86p.

 

Turner, D. B. 1994. Workbook of atmospheric dispersion estimates: an introduction to dispersion modelling. 2nd Ed., CRC Press, London, 192p.

 

Vithayas, R.P.; MacGill, I.F. 2011. Generation portfolio analysis for low-carbon future electricity industries with high wind power penetrations. In Proceedings of the 2011 IEEE Trondheim PowerTech, 1- 6.

 

Wang, S.; Djilali, D. 2012. Toward low carbon energy systems: the convergence of wind power, demand response, and the electricity grid. In Proceedings of the 2012 IEEE international conference on innovative smart grid technologies—Asia (ISGT Asia’12), 1-8.

 

Yin, Y.; Lawphongpanich, S. 2006. Internalizing emission externality on road networks, Transportation Research Part D: Transport and Environment 11(4): 292-301.

 

Żeliński, J.; Kaleta, D.; Telenga-Kopyczyńska, J. 2017. Empirical estimation of virtual point source height over a bank of coke ovens, Environmental Modeling & Assessment 22(1): 17-26.