Volume List  / Volume 3 (1)



DOI: 10.7708/ijtte.2013.3(1).06

3 / 1 / 64-68 Pages


Jan Černý - University of Economics, Prague, Faculty of Management, Jindřichův Hradec, Czech Republic -

Anna Černá - University of Economics, Prague, Faculty of Management, Jindřichův Hradec, Czech Republic -

Vladimír Přibyl - University of Economics, Prague, Faculty of Management, Jindřichův Hradec, Czech Republic -


The paper introduces a family of subnetwork optimization problems as a part of network management theory. Three optimization problems are formulated and the solution methods are described. Five practical situations, when these solutions may be applied, are presented. Possibilities of future research are outlined as well.

Download Article

Number of downloads: 1985


The described research was supported by the Czech Scientific Agency GAČR project No. 402/12/2147 “Economically Optimal Processes on Networks”.


Amini, O.; Peleg, D.; Pérennes, S.; Sau, I.; Saurabh, S. 2009. Degree-Constrained Subgraph Problems: Hardness and Approximation Results. In: E. Bampis and M. Skutella (Eds.): WAOA 2008, LNCS 5426, Springer-Verlag, Berlin Heidelberg. 29-42.


ÄŒerná, A.; ÄŒerný, J. 2012. Note on Optimal Paths for Non-Motorized Transport on the Network. In Proceedings of the 30th International Conference Mathematical Methods in Economics, Karviná, Czech Republic. 91-94.


ÄŒerná, A.; ÄŒerný, J.; PÅ™ibyl, V. 2011. Bus Route Design in Small Demand Areas, Transport. DOI: http://dx.doi.org/10.3846/16484142.2011.622135, 26(3): 248-254.


Cheriyan, J.; Thurimella, R. 2000. Approximating Minimum-Size k-Connected Spanning Subgraphs via Matching, SIAM Journal on Computing, 30(2): 528-560.


Czimerman, P.; ÄŒerná, A.; ÄŒerný, J.; Peško, Š. 2007. Network Reduction Problems, Journal of Information, Control and Management Systems, 5(2): 139-147.


De Man, A.P. 2004. The Network Economy: Strategy, Structure and Management. Edw. Elgar, Cheltenham, G.B. 190 p.


Eades, P.; Foulds, L.R.; Giffin, J.W. 1982. An Efficient Heuristic for Identifying a Maximum Weight Planar Subgraph. Combinatorial Mathematics IX, Lecture Notes in Mathematics No. 952, Springer-Verlag, Berlin Heidelberg. 239-251.


Fiala, P. 2008. Network Economics (in Czech). Professional Publishing, Praha. 324 p.


Gabow, H.N.; Goemans, M.X.; Tardos, E.; Williamson, D.P. 2005. Approximating the Smallest k-Edge Connected Spanning Subgraph by LP-Rounding. In SODA ‘05 Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. 562-571.


Xiao, J.; Cui, Y.; Luo, F.; Liu, M.; Wang, J.; Li, Y.; Gao, Y.; Wang, S. 2008. Comprehensive method on evaluation of distribution network planning. In Proceedings of the Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjuing, China. 1249-1254.


Safari, M.A.; Salavatipour, M.R. 2008. A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph with Metric Costs. In: A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, Springer-Verlag, Berlin Heidelberg. 233-246.


Shimoda, Y. 2000. Heat source network and heat transport, District Heating & Cooling, 41(3): 3-5.


Suzuki, A.; Tokuyama, T. 2006. Dense subgraph problem revisited. In Proceedings of the Joint Workshop “New Horizons in Computing” and “Statistical Mechanical Approach to Probabilistic Information Processing”, Sendai, Japan. 1-2.


Vassilevska, V.; Williams, R.; Yuster, R. 2006. Finding the Smallest H-Subgraph in Real Weighted Graphs and Related Problems. In: M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, Springer-Verlag, Berlin Heidelberg. 262-273.