Volume List  / Volume 12 (2)

Article

FAILURES/BREAKDOWNS DUE TO RESIDUAL STRESSES IN THE VEHICLE INDUSTRY

DOI: 10.7708/ijtte2022.12(2).10


12 / 2 / 291-301 Pages

Author(s)

Hussein Alzyod - Department of Railway Vehicles and Vehicle System Analysis, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H-1111 Budapest Műegyetem rkp. 3, Hungary -

Peter Ficzere - Department of Railway Vehicles and Vehicle System Analysis, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H-1111 Budapest Műegyetem rkp. 3, Hungary -


Abstract

The evaluation of residual stress is crucial since it has a significant impact on the component's lifetime and can cause breakdown or failure during manufacture, which may affect the economics, lives, and the environment. Residual stress analysis has now become a mandatory requirement in the automobile industry. Because each manufacturing process like machining, casting, heat treatment, and coating impacts the residual stress state, it can be pretty complicated and varied within the components. If the effects of these processes are well studied, it is possible to achieve a stress state in the part that will increase its lifetime and performance while lowering costs with an optimized method. This paper discusses the effect of residual stress on the automotive industry and illustrates how is residual stress participates in every manufacturing process of vehicles.


Download Article

Number of downloads: 389


References:

Agarwal, S.; Chakraborty, S.; Prasad, K.; Chakraborty, S. 2021. A Rough Multi-Attributive Border Approximation Area Comparison Approach for Arc Welding Robot Selection, Jordan Journal of Mechanical and Industrial Engineering 15(2): 169-180.

 

Alzyod, H.; Ficzere, P. 2021. Residual Stresses in Additive Manufacturing, GÉP LXXII 3–4: 41–44.

 

Bachman, K. 2018. Light weighting still dominates Great Designs in Steel seminar. Available from Internet: https://www.thefabricator.com/stampingjournal/article/stamping/lightweighting-still-dominates-great-designs-in-steel-seminar. [Accessed: 9 February 2022].

 

Coules, H. E.; Horne, G. C. M.; Abburi Venkata, K.; Pirling, T. 2018. The effects of residual stress on elastic-plastic fracture propagation and stability, Materials & Design 143: 131–140. doi: 10.1016/J.MATDES.2018.01.064.

 

Czyzewski, H. 1975. Brittle failure: the story of a bridge, Metal Progr.(West) 1: 6–12.

 

Dahunsi, O. A.; Ojo, O. O.; Ogedengbe, I.; Maliki, O. B. 2020. Design and Analysis of Permanent Mould for Small Internal Combustion Engine Piston, Jordan Journal of Mechanical and Industrial Engineering 14(4): 401-411.

 

Davis, J.R. 2002. Surface Hardening of Steel: Understanding the Basics. Materials Park, OH: ASM International. 364 p.

 

Fairfax, E. J.; Steinzig, M. 2016. A Summary of Failures Caused by Residual Stresses. In Proceedings of the Society for Experimental Mechanics Series, 9: 209–214. doi: 10.1007/978-3-319-21765-9_26.

 

Ficzere, P.; Borbas, L.; Szebenyi, G. 2017. Reduction possibility of residual stresses from additive manufacturing by photostress method, Materials Today: Proceedings 4(5): 5797–5802. doi: 10.1016/j.matpr.2017.06.048.

 

forgacsolaskutatas.hu. 2022. Available from Internet: http://www.forgacsolaskutatas.hu/elmelet/feluletminoseg/. [Accessed: 9 February 2022].

 

García Navas, V.; Gonzalo, O.; Quintana, I.; Pirling, T. 2011. Residual stresses and structural changes generated at different steps of the manufacturing of gears: Effect of banded structures, Materials Science and Engineering: A 528(15): 5146–5157. doi: 10.1016/J.MSEA.2011.03.004.

 

Häusler, S. M.; Baiz, P. M.; Tavares, S. M. O.; Brot, A.; Horst, P.; Aliabadi, M. H.; de Castro, T.; & Peleg-Wolfin, Y. 2011. Crack Growth Simulation in Integrally Stiffened Structures Including Residual Stress Effects from Manufacturing. Part I: Model Overview, SDHM 7(3): 163–190.

 

Hosford, W. F. 2005. Residual Stresses. In Mechanical Behavior of Materials. Cambridge: Cambridge University Press, 308–323. doi: 10.1017/CBO9780511810930.020.

 

Keste, A. A.; Gawande, S. H.; Sarkar, C. 2016. Design optimization of precision casting for residual stress reduction, Journal of Computational Design and Engineering 3(2): 140–150. doi: 10.1016/J.JCDE.2015.10.003.

 

Koch, R. L., Rybicki, E. F., & Strattan, R. D. (1985). A computational temperature analysis for induction heating of welded pipes, Journal of Engineering Materials and Technology, Transactions of the ASME 107(2): 148–153. doi: 10.1115/1.3225791.

 

Kwak, S. Y.; Hwang, H. Y. 2018. Effect of heat treatment residual stress on stress behavior of constant stress beam, Journal of Computational Design and Engineering 5(1): 137–143. https://doi.org/10.1016/J.JCDE.2017.07.001.

 

Lanciotti, A.; Lazzeri, L.; Polese, C.; Rodopoulos, C.; Moreira, P.; Brot, A.; Wang, G.; Velterop, L.; Biallas, G.; Klement, J. 2011. Fatigue Crack Growth in Stiffened Panels, Integrally Machined or Welded (LBW or FSW): the DaToN Project Common Testing Program, SDHM 7(3): 211–229.

 

McAndrew, A. R.; Colegrove, P. A.; Bühr, C.; Flipo, B. C. D.; Vairis, A. 2018. A literature review of Ti-6Al-4V linear friction welding, Progress in Materials Science 92: 225–257. doi: 10.1016/J.PMATSCI.2017.10.003.

 

McClung, R. C. 2007. A literature survey on the stability and significance of residual stresses during fatigue, Fatigue and Fracture of Engineering Materials and Structures 30(3): 173–205. doi: 10.1111/J.1460-2695.2007.01102.X.

 

McGrann, R. T. R.; Greving, D. J.; Shadley, J. R.; Rybicki, E. F.; Kruecke, T. L.; Bodger, B. E. 1998. The effect of coating residual stress on the fatigue life of thermal spray-coated steel and aluminum, Surface & Coatings Technology 108: 59–64.

 

Mertinger, V.; Sólyom, J.; Cseh, D. 2010. Residual stress testing by X-ray diffraction. Miskolc. 39 p.

 

Moreira, P. M. G. P.; da Silva, L. F. M.; de Castro, P. M. S. T. (Eds.). 2012. Structural Connections for Lightweight Metallic Structures. Springer Berlin Heidelberg, Berlin, Heidelberg. 264 p.

 

Podgornik, B.; Milanović, S.; Vižintin, J. 2010. Effect of different production phases on residual stress field in double-layer cast rolls, Journal of Materials Processing Technology 210(8): 1083–1088. doi: 10.1016/J.JMATPROTEC.2010.02.017.

 

Richter-Trummer, V., Moreira, P. M. G. P., & Castro, P. M. S. T. de. 2011. Damage Tolerance of Aircraft Panels Taking into Account Residual Stress, In Structural Connections for Lightweight Metallic Structures. Springer, Berlin, Heidelberg: 173–194. doi: 10.1007/8611_2011_55.

 

Rybicki, E. F.; McGuire, P. A. 1982. The effects of induction heating conditions on controlling residual stresses in welded pipes, Journal of Engineering Materials and Technology, Transactions of the ASME 104(4): 267–273. doi: 10.1115/1.3225075.

 

Sediako, D.; Stroh, J.; Kianfar, S. 2021. Residual stress in Automotive Powertrains: Methods and Analyses, Materials Science Forum 1016: 1291–1298. doi: 10.4028/WWW.SCIENTIFIC.NET/MSF.1016.1291.

 

Sepsi, M.; Angel, D.; Cseh, D.; Benke, M.; Mertinger, V. 2017. Residual stress monitoring for machine industry. In Proceedings of the 5th International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2017), 466–471.

 

Tavares, S. M. O.; Häusler, S. M.; Baiz, P. M.; de Castro, T.; Horst, P.; Aliabadi, M. H. 2011. Crack Growth Simulation in Integrally Stiffened Structures Including Residual Stress Effects from Manufacturing. Part II: Modelling and Experiments Comparison, SDHM 7(3): 191–209.

 

Tavares S. M. O.; de Castro, P. M. S. T. 2019. Residual Stress. (In Damage Tolerance of Metallic Aircraft Structures: Materials and Numerical Modelling). Springer International Publishing. 67–90 p. doi: 10.1007/978-3-319-70190-5_7.

 

Tisza, M.; Czinege, I. 2018. Comparative study of the application of steels and aluminium in lightweight production of automotive parts, International Journal of Lightweight Materials and Manufacture 1(4): 229–238. https://doi.org/10.1016/J.IJLMM.2018.09.001.

 

White, T.N.; Kantimathi, S. 1992. Stress-Corrosion Cracking of a High-Strength Steel Frame in a Fighter Aircraft (edited by K.A. Esakul) In Handbook of Case Histories in Failure Analysis. ASM International, Volume 1. doi: 10.31399/asm.fach.v01.9781627082143.

 

Totten, G.; Howes, M.; Inoue, T. 2002. Handbook of residual stress and deformation of steel. ASM international. 499 p.

 

Watson, T. J. 1999. United Technologies Corporation: High Strength Aluminum Alloy. EP1111078A3 [Patent].

 

Withers, P. J.; Bhadeshia, H. K. D. H. 2001a. Residual stress part 1 - Measurement techniques, Materials Science and Technology 17(4): 355–365. doi: 10.1179/026708301101509980.

 

Withers, P. J.; Bhadeshia, H. K. D. H. 2001b. Residual stress part 2 - Nature and origins, Materials Science and Technology 17(4): 366–375. doi: 10.1179/026708301101510087.

 

Zelenova, V. D.; Butaev, E. I.; Knorozova, T. B.; Lushnikov, S. A.; Muratov, F. G. 1982. Residual-stress distribution and microstructure of fractures in blanks of cylinder shells of gray cast iron, Metal Science and Heat Treatment 24(6): 382–386. doi: 10.1007/BF00780437.

 

Zhang, Q.; Tang, H.; Guo, S. 2021. Calculation Method of Stiffness and Deflection of Corroded RC Beam Strengthened by Steel Plate, Jordan Journal of Mechanical and Industrial Engineering 15(1): 65-71.


Quoted IJTTE Works



Related Keywords