Volume List  / Volume 12 (1)

Article

CRITICAL HEADWAY AT UNSIGNALIZED INTERSECTIONS - LITERATURE REVIEW

DOI: 10.7708/ijtte2022.12(1).05


12 / 1 / 61 - 77 Pages

Author(s)

Dunja Radović - University of East Sarajevo, Faculty of Transport and Traffic Engineering Doboj, Vojvode Mišića 52, Doboj 74000, Bosnia and Herzegovina -

Vuk Bogdanović - University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21102 Novi Sad, Serbia -

Bojan Marić - University of East Sarajevo, Faculty of Transport and Traffic Engineering Doboj, Vojvode Mišića 52, Doboj 74000, Bosnia and Herzegovina -


Abstract

The critical headway is one of key traffic flow parameters for determining the capacity and level of service. The adoption of recommended critical headway values leads to inaccurate capacity estimation and poor investment decisions. Therefore, it is very important that the estimated values of this headway be as precise and accurate as possible in order to reflect the real behavior of drivers and real traffic conditions of a certain area or country. This paper provides a synthesis of selected studies in which the critical headway was estimated on the basis of real data collected at unsignalized intersections. The aim of this paper is to summarize the key results and conclusions related to the factors influencing the probability of accepting a headway and the most commonly used methods for its estimation. A detailed search of studies in which critical headways were analyzed revealed that no review paper on the analyzed intersections has been published so far.


Download Article

Number of downloads: 903


References:

Akçelik, R. 2012. Issues in performance assessment of sign-controlled intersections. In Proceedings of the 25th ARRB Conference – Shaping the future: Linking policy, research and outcomes, Perth, Australia, 1-14.

 

Abhigna, D.; Brahmankar, D. P.; Ravishankar, K. V. R. 2020. Multi Vehicle-Type Right Turning Gap-Acceptance and Capacity Analysis at Uncontrolled Urban Intersections, Periodica Polytechnica Transportation Engineering 48(2): 99-108. doi: https://doi.org/10.3311/PPtr.9744.

 

Amin, H. J.; Maurya, A. K. 2015. A review of critical gap estimation approaches at uncontrolled intersection in case of heterogeneous traffic conditions, Journal of Transport Literature 9(3): 5-9.

 

Amin, P.; Patel, P. N.; Amin, A. A. 2018. Analysis of critical gap approaches at four legged median separated uncontrolled intersection in case of heterogeneous traffic condition, International Research Journal of Engineering and Technology 5(5): 2615-2619.

 

Brilon, W. 2016. Some remarks regarding the estimation of critical gaps, Transportation research record 2553(1): 10-19. doi: https://doi.org/10.3141/2553-02.

 

Brilon, W.; Koenig, R.; Troutbeck, R.J. 1999. Useful estimation procedures for critical gaps, Transportation Research Part A: Policy and Practice 33(3-4): 161-186.

 

Beanland, V.; Lenné, M. G.; Candappa, N.; Corben, B. 2013. Gap acceptance at stop-controlled T-intersections in a simulated rural environment, Transportation Research Part F: Traffic Psychology and Behaviour 20: 80-89. doi: https://doi.org/10.1016/j.trf.2013.05.006.

 

Bunker, J. M. 2012. Novel methods and the maximum likelihood estimation technique for estimating traffic critical gap, Journal of Advanced Transportation 48(6): 542-555.

 

Bogdanović, V.; Ruškić, N.; Kulović, M.; Han, L. D. 2013. Toward a capacity analysis procedure for nonstandard two-way stop-controlled intersections, Transportation Research Record 2395(1): 132-138. doi: https://doi.org/10.3141/2395-15.

 

Bogdanović, V.; Ruškić, N.; Basarić, V.; Tanackov, I. 2017. Capacity analysis procedure for four-leg non-standard unsignalised intersections, Promet-Traffic&Transportation 29(5): 543-550. doi: https://doi.org/10.7307/ptt.v29i5.2366.

 

Chodur, J. 2005. Capacity models and parameters for unsignalized urban intersections in Poland, Journal of Transportation Engineering 131(12): 924-930. doi: https://doi.org/10.1061/(ASCE)0733-947X(2005)131:12(924).

 

Chandra, D. S.; Mohan, D. M. 2018. Analysis of driver behaviour at unsignalized intersections, Journal of the Indian Roads Congress 79(2): 5-10.

 

Cvitanić, D.; Lozić, I. 2002. Unsignalized intersection capacity models [In Croatian: Modeli kapaciteta nesemaforiziranih raskrižja], Ceste i mostovi (7-8): 167-176.

 

Devarasetty, P. C.; Zhang, Y.; Fitzpatrick, K. 2012. Differentiating between left-turn gap and lag acceptance at unsignalized intersections as a function of the site characteristics, Journal of Transportation Engineering 138(5): 580-588. doi: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000368.

 

Dissanayake, S.; Lu, J. J.; Ping, Y. I. 2002. Driver age differences in day and night gap acceptance capabilities, IATSS Research 26(1): 71-79.

 

Dutta, M.; Ahmed, M. A. 2016. Critical gap and critical lag estimation of uncontrolled T-intersections using clearing behaviour approach. In Proceedings of National Conference on Recent Advances in Civil Engineering (RACE2016), SVNIT, Surat, India, 1-8.

 

Dutta, M.; Ahmed, M. A. 2017. Gap acceptance behavior of drivers at uncontrolled T-intersections under mixed traffic conditions, Journal of Modern Transportation 26(2): 119-132. doi: https://doi.org/10.1007/s40534-017-0151-9.

 

Elefteriadou, L. 2014. An introduction to traffic flow theory (Vol. 84). New York: Springer. 251p.

 

Fajaruddin, M.; Ismail, A. R.; Erwan, S.; Zulkifli, S.; Shamsul, K. A.; Noor, A. S. 2015. Gap acceptance behavior model for non-signalized T-intersections on Malaysia rural roadway, International Journal of Integrated Engineering 7(1): 39-43.

 

Gavulová, A. 2012. Use of statistical techniques for critical gaps estimation. In Proceedings of the 12th international conference, reliability and statistics in transportation and communication (Rel-Stat’12), Riga, Latvia, 17-20.

 

Gartner, N.H.; Messer, C.J.; Rathi, A. 2001. Traffic flow theory-A state-of-the-art report: revised monograph on traffic flow theory. 386p.

 

Harwood, D. W.; Mason, Jr, J. M.; Brydia, R. E. 2000. Sight distance for stop-controlled intersections based on gap acceptance, Transportation Research Record 1701(1): 32-41. doi: https://doi.org/10.3141/1701-05.

 

HCM. 2010. Highway Capacity Manual. Washington D.C.: Transportation Research Board of the National Research Council.

 

HCM. 2016. Highway Capacity Manual. Washington D.C.: Transportation Research Board of The National Research Council.

 

Ibrahim, W. H. W.; Sanik, M. E. 2007. Estimating critical gap acceptance for unsignalised T-intersection under mixed traffic flow condition. In Proceedings of the Eastern Asia Society for Transportation Studies 6: 314-314.

 

Kuzović, Lj.; Bogdanović, В. 2010. Traffic Flow Theory [In Serbian: Teorija saobraćajnog toka]. Faculty of Technical Sciences, Novi Sad, Serbia.

 

Kareem, A. 2002. A Comparative Study of Gap Acceptance at Priority Intersections, Journal of Science, Engineering and Technology 3(1): 1-6.

 

Lord-Attivor, R.; Jha, M. 2012. Modeling gap acceptance and driver behavior at stop controlled (priority) intersections in developing countries, Applied Mathematics in Electrical and Computer Engineering, 29-38.

 

Lord-Attivor, R.; Jha, M. 2013. Evaluating Driver Behavior at Two-Way Stop Controlled (TWSC) Intersections using Logistic Regression Models, Recent Advances in Mathematics, 245-252.

 

Lakkundi, V. R.; Park, B.; Garber, N. J.; Fontaine, M. D. 2004. Development of Left-Turn Lane Guidelines for Signalized and Unsignalized Intersections. Final Report. Virginia Transportation Research Council. 72p.

 

Liao, D.; Ma, W.; Bai, Y. 2014. Unconventional Impacting Factors of Gap Acceptance at Stop Sign-Controlled Intersections. In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, 2175-2184. doi: https://doi.org/10.1061/9780784413623.209.

 

Luttinen, R. T. 2004. Capacity and level of service at Finnish unsignalized intersections: S12 Solutions to improve main roads. Finnish Road Administration. 210p.

 

Ma, W.; Zhao, J. 2019. Investigating gap acceptance behavior at two-way stop-controlled intersections in China, Transportation Letters 12(3): 202-212. doi: https://doi.org/10.1080/19427867.2019.1567021.

 

Maurya, A. K.; Amin, H. J.; Kumar, A. 2016. Estimation of critical gap for through movement at four leg uncontrolled intersection, Transportation Research Procedia 17: 203-212. doi: https://doi.org/10.1016/j.trpro.2016.11.076.

 

Maslać, D.; Jurić, Z.; Miletić, K. 2018. An overview of statistical methods for estimating critical gap at a roundabout [In Croatian: Pregled statističkih metoda za procjenu kritične vremenske praznine na kružnom raskrižju]. Common Foundations 2018-uniSTem: 6th Congress of Young Researchers in the Field of Civil Engineering and Related Sciences, University of Split, Faculty of Civil Engineering, Architecture and Geodesy, 142-148.

 

Mohan, M.; Chandra, S. 2016. Review and assessment of techniques for estimating critical gap at two-way stop-controlled intersections, European Transport-Trasporti Europei (61): 1-18.

 

Mohan, M.; Chandra, S. 2017. Critical gap estimation at two-way stop-controlled intersections based on occupancy time data, Transportmetrica A: Transport Science 14(4): 316-329. doi: https://doi.org/10.1080/23249935.2017.1385657.

 

Mohan, M.; Chandra, S. 2018. Influence of major stream composition on critical gap at two-way stop-controlled intersections–a case study, Transportation Letters 12(1): 1-8. doi: https://doi.org/10.1080/19427867.2018.1494896.

 

McGowen, P.; Stanley, L. 2012. Alternative methodology for determining gap acceptance for two-way stop-controlled intersections, Journal of Transportation Engineering 138(5): 495-501.

 

Patil, G. R.; Pawar, D. S. 2014. Temporal and spatial gap acceptance for minor road at uncontrolled intersections in India, Transportation Research Record 2461(1): 129-136. doi: https://doi.org/10.3141/2461-16.

 

Patil, G. R.; Sangole, J. P. 2015. Gap acceptance behavior of right-turning vehicles at T-intersections - A case study, Journal of the Indian Roads Congress 76(1): 44-54.

 

Patil, G. R.; Sangole, J. P. 2016. Behavior of two-wheelers at limited priority uncontrolled T-intersections, IATSS Research 40(1): 7-18. doi: https://doi.org/10.1016/j.iatssr.2015.12.002.

 

Pawar, D. S.; Patil, G. R. 2019. Analyzing variations in spatial critical gaps at two-way stop controlled intersections using parametric and non-parametric techniques, Journal of Traffic and Transportation Engineering (English Edition) 8(1): 129-138. doi: https://doi.org/10.1016/j.jtte.2018.03.008.

 

Pawar, D. S.; Patil, G. R.; Chandrasekharan, A.; Upadhyaya, S. 2015. Classification of gaps at uncontrolled intersections and midblock crossings using support vector machines, Transportation research record 2515(1): 26-33. doi: https://doi.org/10.3141/2515-04.

 

Pollatschek, M. A.; Polus, A.; Livneh, M. 2002. A decision model for gap acceptance and capacity at intersections, Transportation Research Part B: Methodological 36(7): 649-663. doi: https://doi.org/10.1016/S0191-2615(01)00024-8.

 

Prassas, E.S.; Roess, R.P. 2020. The Highway Capacity Manual: A Conceptual and Research History. Volume 2, Springer International Publishing. 395p.

 

Raff, M.S. 1950. A volume warrant for urban stop signs. Eno Foundation for Highway Traffic Control. 121p.

 

Rao, B. S.; Rambabu, T.; Rao, G. V. 2017. Analysis of capacity and level of service at uncontrolled intersections under heterogeneous traffic conditions, International Journal of Civil Engineering and Technology 8(8): 181-190.

 

Ragland, D. R.; Arroyo, S.; Shladover, S. E.; Misener, J. A.; Chan, C. Y. 2006. Gap acceptance for vehicles turning left across on-coming traffic: Implications for Intersection Decision Support design. 25p.

 

Sangole, J. P.; Patil, G. R. 2014. Adaptive neuro-fuzzy interface system for gap acceptance behavior of right-turning vehicles at partially controlled T-intersections, Journal of Modern Transportation 22(4): 235-243. doi: https://doi.org/10.1007/s40534-014-0057-8.

 

Sangole, J. P.; Patil, G. R.; Patare, P. S. 2011. Modelling gap acceptance behavior of two-wheelers at uncontrolled intersection using neuro-fuzzy, Procedia-Social and Behavioral Sciences 20: 927-941. doi: https://doi.org/10.1016/j.sbspro.2011.08.101.

 

Sahraei, M. A.; Puan, O. C. 2014. Determination of gap acceptance at priority intersections. In Proceedings of 8th SEATUC Symposium 4: 1-5.

 

Saplioglu, M. Karasahin, M. 2013. Predicting Critical Gap Using Fuzzy Logic Method at Unsignalised Urban Intersections, AWERProcedia Information Technology & Computer Science 3: 1566-1564.

 

Stanimirović, D.; Bogdanović, V.; Drašković, D. 2020. The Research Into the Influence of Non-Resident Drivers on the Critical Headway and Follow-Up Headway at an Unsignalised Intersection, Journal TTTP - Traffic and transport theory and practice, 5(1): 16-22.

 

Serag, M. S. 2015. Gap-acceptance behavior at uncontrolled intersections in developing countries, Malaysian Journal of Civil Engineering 27(1): 80-93.

 

San, K. N. N.; Siridhara, S. 2019. Gap Acceptance for Yangon Urban and Suburban Intersections. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 690(1): 012023.

 

Troutbeck, R. J. 1992. Estimating the Critical Acceptance Gap from Traffic Movements, ser. Physical Infrastructure Centre research report. Physical Infrastructure Centre, Queensland University of Technology. 23p.

 

Troutbeck, R. J. 2014. Estimating the mean critical gap, Transportation Research Record 2461(1): 76-84. doi: https://doi.org/10.3141/2461-10.

 

Tian, Z.; Vandehey, M.; Robinson, B.W.; Kittelson, W.; Kyte, M.; Troutbeck, R.; Brilon, W.; Wu, N. 1999. Implementing the maximum likelihood methodology to measure a driver’s critical gap, Transportation Research Part A: Policy and Practice 33(3-4): 187-197.

 

Tian, Z. Z.; Troutbeck, R.; Kyte, M.; Brilon, W.; Vandehey, M. A. R. K.; Kittelson, W.; Robinson, B. 2000. A further investigation on critical gap and follow-up time. In Proceedings of the 4th International Symposium on Highway Capacity, Maui/Hawaii, Transportation Research Circular E-C018, 409-421.

 

Tanackov, I.; Deretić, N.; Bogdanović, V.; Ruškić, N.; Jović, S. 2018. Safety time in critical gap of left turn manoeuvre from priority approach at TWSC unsignalized intersections, Physica A: Statistical Mechanics and its Applications 505: 1196-1211. doi: https://doi.org/10.1016/j.physa.2018.04.043.

 

Tupper, S. M., Knodler Jr, M. A., Hurwitz, D. S. 2011. Connecting gap acceptance behavior with crash experience. In 3rd International Conference on Road Safety and Simulation, Purdue University, Transportation Research Board. 18p.

 

Wu, N. 2006. A new model for estimating critical gap and its distribution at unsignalized intersections based on the equilibrium of probabilities. In Proceeding of the 5th international symposium on highway capacity and quality of service. July 25 - 29, 2006,Yokohama, Japan. 10p.

 

Wu, N. 2012. Equilibrium of probabilities for estimating distribution function of critical gaps at unsignalized intersections, Transportation Research Record 2286(1): 49-55. doi: https://doi.org/10.3141/2286-06.

 

Yan, X.; Radwan, E.; Guo, D. 2007. Effects of major-road vehicle speed and driver age and gender on left-turn gap acceptance, Accident Analysis & Prevention 39(4): 843-852. doi: https://doi.org/10.1016/j.aap.2006.12.006.

 

Zhong, X.; Zhu, X.; Zhang, Y.; Liu, X. 2007. Left-turn gap acceptance behavior of tee type of unsignalized intersection. In Proceedings of the First International Conference on Transportation Engineering. July 22-24, 2007, Southwest Jiaotong University, Chengdu, China, 2975-2980. doi: https://doi.org/10.1061/40932(246)488.

 

Zhou, H.; Ivan, J. N.; Gårder, P. E.; Ravishanker, N. 2017. Gap acceptance for left turns from the major road at unsignalized intersections, Transport 32(3): 252-261. doi: https://doi.org/10.3846/16484142.2014.933445.


Quoted IJTTE Works



Related Keywords