Volume List  / Volume 5 (3)

Article

MONTE-CARLO SIMULATION OF ROAD TRANSPORT EMISSION

DOI: 10.7708/ijtte.2015.5(3).05


5 / 3 / 278-285 Pages

Author(s)

Adam Torok - Budapest University of Technology and Economics, Department of Transport Technology and Economics, Hungary -


Abstract

There are microscopic, mezoscopic and macroscopic models in road traffic analysis and forecasting. From microscopic models one can calculate the macroscopic data by aggregation. The following paper describes the disaggregation method of macroscopic state, which could lead to microscopic properties of traffic. In order to ensure the transform between macroscopic and microscopic states Monte-Carlo simulation was used. MS Excel macro environment was built to run Monte-Carlo simulation. With this method the macroscopic data can be disaggregated to macroscopic data and as a byproduct mezoscopic, regional data can be gained. These mezoscopic data can be used further on regional environmental or transport policy assessment.


Download Article

Number of downloads: 1207


Acknowledgements:

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Author is thankful for Mr. Gabor SZENDRO (iTEAM Ltd) for his help. The research was supported by Energy Club Ltd.


References:

Ahanchian, M.; Biona, J.B.M. 2014. Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila, Energy Policy. DOI: http://dx.doi.org/10.1016/j.enpol.2013.11.026, 66: 615-629.

 

Andreoni, V.; Galmarini, S. 2012. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors, Energy. DOI: http://dx.doi.org/10.1016/j.energy.2012.07.039, 45(1): 595-602.

 

Azar, C.; Lindgren, K.; Andersson, B.A. 2003. Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector, Energy Policy. DOI: http://dx.doi.org/10.1016/S0301-4215(02)00139-8, 31(10): 961-976.

 

Bellasio, R.; Bianconi, R.; Corda, G.; Cucca, P. 2007. Emission inventory for the road transport sector in Sardinia (Italy), Atmospheric Environment. DOI: http://dx.doi.org/10.1016/j.atmosenv.2006.09.017, 41(4): 677-691.

 

Bereczky, Á. 2012. Parameter analysis of NO emissions from spark ignition engines, Transport. DOI: http://dx.doi.org/10.3846/16484142.2012.664563, 27(1): 34-39.

 

Domanovszky, H. 2014. Gas propulsion or e-mobility is the solution on the way of clean and carbon free road transportation?, Periodica Polytechnica Transportation Engineering. DOI: http://dx.doi.org/10.3311/PPtr.7254, 42(1): 63-72.

 

Emőd, I.; Török, Á. 2010. A hazai gépjárműállomány statisztikai vizsgálata különös tekintettel a károsanyag kibocsátásra (in Hungarian), Jövő Járműve Járműipari Innováció, 1: 16-21.

 

Haldenbilen, S. 2006. Fuel price determination in transportation sector using predicted energy and transport demand, Energy Policy. DOI: http://dx.doi.org/10.1016/j.enpol.2005.06.007, 34(17): 3078-3086.

 

Hassan, M.N.A.; Jaramillo, P.; Griffin, W.M. 2011. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector’s energy security, Energy Policy. DOI: http://dx.doi.org/10.1016/j.enpol.2011.02.030, 39(5): 2615-2625.

 

He, D.; Liu, H.; He, K.; Meng, F.; Jiang, Y.; Wang, M.; Zhou, J.; Calthorpe, P.; Guo, J.; Yao, Z., Wang, Q. 2013. Energy use of, and CO2 emissions from China’s urban passenger transportation sector – Carbon mitigation scenarios upon the transportation mode choices, Transportation Research Part A: Policy and Practice. DOI: http://dx.doi.org/10.1016/j.tra.2013.06.004, 53: 53-67.

 

Hilmola, O.-P. 2013. From Bubble to Sustainable Economy in the Baltic States, Transport and Telecommunication. DOI: http://dx.doi.org/10.2478/ttj-2013-0021, 14(3): 237-249.

 

Johansson, B. 1995. Strategies for reducing emissions of air pollutants from the Swedish transportation sector, Transportation Research Part A: Policy and Practice. DOI: http://dx.doi.org/10.1016/0965-8564(95)00003-7, 29(5): 371-385.

 

Junevičius, R.; Bogdevičius, M.; Török, Á. 2011. Modelling Of Internal Combustion Engines’ Emission Through The Use Of Traffic Flow Mathematical Models, Transport. DOI: http://dx.doi.org/10.3846/16484142.2011.621978, 26(3): 271-278.

 

Kousoulidou, M.; Ntziachristos, L.; Fontaras, G.; Martini, G.; Dilara, P.; Samaras, Z. 2012. Impact of biodiesel application at various blending ratios on passenger cars of different fueling technologies, Fuel. DOI: http://dx.doi.org/10.1016/j.fuel.2012.03.038, 98: 88-94.

 

Lu, I.J.; Lewis, C.; Lin, S.J. 2009. The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector, Energy Policy. DOI: http://dx.doi.org/10.1016/j.enpol.2009.03.039, 37(8): 2952-2961.

 

Luckow, P.; Wise, M.A.; Dooley, J.J.; Kim, S.H. 2010. Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios, International Journal of Greenhouse Gas Control. DOI: http://dx.doi.org/10.1016/j.ijggc.2010.06.002, 4(5): 865-877.

 

Meszaros, F.; Torok, A. 2014. Theoretical investigation of emission and delay based intersection controlling and synchronising in Budapest, Periodica Polytechnica Transportation Engineering. DOI: http://dx.doi.org/10.3311/PPtr.7183, 42(1): 37-42.

 

Motasemi, F.; Afzal, M.T.; Salema, A.A.; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R. 2014. Energy and energy utilization efficiencies and emission performance of Canadian transportation sector, Energy. DOI: http://dx.doi.org/10.1016/j.energy.2013.09.064, 64: 355-366.

 

Mraihi, R.; ben Abdallah, K.; Abid, M. 2013. Road transport-related energy consumption: Analysis of driving factors in Tunisia, Energy Policy. DOI: http://dx.doi.org/10.1016/j.enpol.2013.07.007, 62: 247-253.

 

Paar, I.; Szoboszlay, M.; Telekesi, T. 2014. National Transport Strategy - Transport Energy Efficieny Enhancement Action Plan (in Hungarian: Nemzeti Közlekedési Stratégia - Közlekedési Energiahatékonyság Növelési Cselekvési Terv).

 

Praveen, P.S.; Arasan, V.T. 2013. Influence of traffic mix on pcu value of vehicles under heterogeneous traffic conditions, International Journal for Traffic and Transport Engineering. DOI: http://dx.doi.org/10.7708/ijtte.2013.3(3).07, 3(3): 302-330.

 

Samaras, Z.; Ntziachristos, L.; Burzio, G.; Toffolo, S.; Tatschl, R.; Mertz, J.; Monzon, A. 2012. Development of a Methodology and Tool to Evaluate the Impact of ICT Measures on Road Transport Emissions, Procedia - Social and Behavioral Sciences. DOI: http://dx.doi.org/10.1016/j.sbspro.2012.06.1306, 48: 3418-3427.

 

Tian, Y.; Zhu, Q.; Lai, K.; Venus Lun, Y.H. 2014. Analysis of greenhouse gas emissions of freight transport sector in China, Journal of Transport Geography. DOI: http://dx.doi.org/10.1016/j.jtrangeo.2014.05.003, 40: 43-52.

 

Timilsina, G.R.; Shrestha, A. 2009. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options, Energy Policy. DOI: http://dx.doi.org/10.1016/j.enpol.2009.06.009, 37(11): 4523-4539.

 

Török, Á. 2009. Theoretical estimation of the environmental impact of biofuel mixtures, Transport. DOI: http://dx.doi.org/10.3846/1648-4142.2009.24.26-29, 24(1): 26-29.

 

Török, Á.; Török, Á. 2014. Macroeconomic analysis of road vehicles related environmental pollution in Hungary, Central European Journal of Engineering. DOI: http://dx.doi.org/10.2478/s13531-013-0147-0, 4(2): 186-191.

 

Zöldy, M. 2011. Ethanol–Biodiesel–Diesel Blends As A Diesel Extender Option On Compression Ignition Engines, Transport. DOI: http://dx.doi.org/10.3846/16484142.2011.623824, 26(3): 303-309.