Volume List  / Volume 3 (3)

Article

ECONOMICAL INVESTIGATION OF RAPID PROTOTYPING

DOI: 10.7708/ijtte.2013.3(3).09


3 / 3 / 344-350 Pages

Author(s)

Péter Ficzere - Department of Vehicle Parts and Drives, Budapest University of Technology and Economics, H-1111 Budapest, Bertalan L. u. 2. -

Lajos Borbás - Department of Vehicle Parts and Drives, Budapest University of Technology and Economics, H-1111 Budapest, Bertalan L. u. 2. -

Ádám Török - Department of Transport Economics, Budapest University of Technology and Economics, H-1111 Budapest, Bertalan L. u. 2. -


Abstract

Usage of rapid prototyping gain developers, designers and engineers more time and consume less money and save more resources. In this article authors investigated the economic possibilities of rapid prototyping. In concurrent engineering, different tasks are tackled at the same time, and not necessarily in the usual order. Concurrent engineering is a method by which several teams within an organization work simultaneously to develop new products and allows more flexible approach. The concurrent engineering is a non-linear product or project design approach during which all phases of manufacturing operate at the same time.


Download Article

Number of downloads: 2629


References:

Anderson, J.R.; Chiu, D.T.; Jackman, R.J.; Cherniavskaya, O.; McDonald, J.C.; Wu, H.; Whitesides, S.H.; Whitesides, G.M. 2000. Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping, Analitical Chemistry. DOI: http://dx.doi.org/10.1021/ac9912294, 72(14): 3158-3164.

 

Barequet, G.; Kaplan, Y. 1998. A data front-end for layered manufacturing, Computer-Aided Design. DOI: http://dx.doi.org/10.1016/S0010-4485(97)00076-6, 30(4): 231-243.

 

Bloomstein, T.M.; Ehrlich, D.J. 1992. Laser‐chemical three‐dimensional writing for microelectromechanics and application to standard‐cell microfluidics, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. DOI: http://dx.doi.org/10.1116/1.586023, 10(6): 2671-2674.

 

Dolenc, A.; Makela, I. 1994. Slicing procedures for layered manufacturing techniques, Computer-Aided Design. DOI: http://dx.doi.org/10.1016/0010-4485(94)90032-9, 26(2): 119-126.

 

Falk, G. 2010. Advantages of Rapid Prototyping [In Hungarian: Gyorsprototípus gyártás elÅ‘nyei], SimDay 2010 Users Day - October 14, 2010.

 

Ficzere, P.; Borbás, L. 2009. Investigation of material properties of rapid-prototyping products for finite element analysis [in Hungarian: Gyors-prototípus készítÅ‘ eljárással gyártott termékek anyagtulajdonságainak meghatározása végeselemes analízis számára] GÉP 60:(10-11). 36-39.

 

Gonzalez, C.; Smith, R.L.; Howitt, D.G.; Collins, S.D. 1998. MicroJoinery: concept, definition, and application to microsystem development, Sensors and Actuators A: Physical. DOI: http://dx.doi.org/10.1016/S0924-4247(98)00074-0, 66(1-3): 315-332.

 

Horváth, E.; Harsányi, G. 2010. Optimization of Fluidic Microchannel Manufacturing Processes in Low Temperature Co-Fired Ceramic Substrates, Periodica Polytechnica Electrical Engineering and Computer Science. DOI: http://dx.doi.org/10.3311/pp.ee.2010-1-2.08, 54(1-2): 79-86.

 

Ikuta, K.; Hirowatari, K.; Ogata, T. 1994. Three dimensional micro integrated fluid systems IFS fabricated by stereo lithography. In Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems. DOI: http://dx.doi.org/10.1109/MEMSYS.1994.555588, 1-6.

 

Kovacs, G.T.A. 1998. Micromachined Transducers Sourcebook. McGraw-Hill: New York. 911 p.

 

Kruth, J.P. 1991. Material increase manufacturing by rapid prototyping technologies, CIRP Annals - Manufacturing Technology. DOI: http://dx.doi.org/10.1016/S0007-8506(07)61136-6, 40(2): 603-614.

 

Limaye, A. 2006. Process Planning Method For Mask Projection Stereolithography Under Parameter Uncertainty, PhD Dissertation. 28 p.

 

Mierswa, I.; Scholz, M.; Klinkenberg, R.; Wurst, M.; Euler, T. 2006. YALE: Rapid Prototyping for Complex Data Mining Tasks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. DOI: http://dx.doi.org/10.1145/1150402.1150531, 935-940.

 

Vashishtha, V.K.; Makade, R.; Mehla, N. 2011. Advancement of Rapid Prototyping in Aerospace Industry - A Review, International Journal of Engineering Science and Technology, 3(3): 2486-2493.

 

Weiyin, M.; Wing-Chung, B.; Peiren, H. 2004. NURBSbased adaptive slicing for efficient rapid prototyping, Computer-Aided Design. DOI: http://dx.doi.org/10.1016/j.cad.2004.02.001, 36(13): 1309-1325.

 

Yarlagadda, P.K.D.V.; Narayanan, S. 2005. GCMM 2004: 1st International Conference on Manufacturing and Management, Narosa Publishing House. 714 p.