Article
THE ROLE OF LOGISTICS CENTRES IN SPACE LOGISTICS SYSTEMS
DOI: 10.7708/ijtte2022.12(4).06
12 / 4 / 501-518 Pages
Author(s)
Milovan Kovač - University of Belgrade, Faculty of Transport and Traffic Engineering, Logistics Department, Vojvode Stepe 305, 11000 Belgrade, Serbia -
Abstract
The development and advancement of human civilization have led it to its next great step – the exploration and colonization of outer space. Humans have had a continuous presence in outer space for more than twenty years, but until now, this was on the level of individual, isolated space missions. Reaching the cosmic level of civilization requires the planning and development of sustainable, long-lasting systems of space logistics. Previous scientific literature did not define the space logistics system adequately, nor did it identify the key elements and stakeholders/participants of such systems. The contribution of this article is in providing an encompassing definition of space logistics, the definition of space logistics system structure, and the role of different categories of logistics centres in its planning and development. The article provides a brief literature review in the domain of all types of human activities that take place in outer space and relates them with the realization of logistics processes to support those activities. Based on that, the main processes and functions that would take place in space logistics systems are defined, which dictate the emergence of diverse, specialized categories of space logistics centres. The identification and planning of appropriate space logistics cetres categories impacts the development directions and patterns of sustainable space logistics systems and enables the spatial integration of systems that cover enormous geographical dimensions and distances.
Number of downloads: 320
References:
Adushkin, V.V.; Aksenov, O.Y.; Veniaminov, S.S.; Kozlov, S.I.; Tyurenkova, V.V. 2020. The Small Orbital Debris Population and Its Impact on Space Activities and Ecological Safety, Acta Astronautica 176: 591–97. doi: 10.1016/j.actaastro.2020.01.015.
Ahadi, B.; Gilmore, N.W.; Luken, E.; Mueller, R.P. 2020. Space Resources Commodities Exchange, New Space 8(2): 103–15. doi: 10.1089/space.2019.0039.
AIAA SLTS. 2021. Definition of Space Logistics. The American Institute of Aeronautics and Astronautics, Reston, Virginia, United States. Available from Internet: https://www.aiaa-sltc.org.
Anderson, S.W.; Christensen, K.; LaManna, J. 2019. The Development of Natural Resources in Outer Space, Journal of Energy and Natural Resources Law 37(2): 227–58. doi: 10.1080/02646811.2018.1507343.
Baraniecka, A. 2019. Space Logistics - Current Status and Perspectives, Transport Economics and Logistics 82: 67–78. doi: 10.26881/etil.2019.82.06.
Blue, R.S.; Bayuse, T.M.; Daniels, V.R.; Wotring, V.E.; Suresh, R.; Mulcahy, R.A.; Antonsen, E.L. 2019. Supplying a Pharmacy for NASA Exploration Spaceflight: Challenges and Current Understanding, npj Microgravity 5(1): 1-12. doi: 10.1038/s41526-019-0075-2.
Braddock, M.; Wilhelm, C.P.; Romain, A.; Bale, L.; Szocik, K. 2020. Application of Socio-Technical Systems Models to Martian Colonisation and Society Build, Theoretical Issues in Ergonomics Science 21(2): 131–52. doi: 10.1080/1463922X.2019.1658242.
Cahill, T.; Hardiman, G. 2020. Nutritional Challenges and Countermeasures for Space Travel, Nutrition Bulletin 45(1): 98–105. doi: 10.1111/nbu.12422.
Chang, Y.W. 2015. The First Decade of Commercial Space Tourism, Acta Astronautica 108: 79–91. doi: 10.1016/J.ACTAASTRO.2014.12.004.
Chari, N.; Venkatadri, U.; Diallo, C. 2013. Orbital Warehouse Design for an Extra-Terrestrial Supply-Chain Distribution Model, International Journal of Performability Engineering 9(6): 609–618. doi: 10.23940/ijpe.13.6.p609.mag.
Chen, H.; Ho, K. 2017. Integrated Space Logistics Mission Planning and Spacecraft Design with Mixed-Integer Nonlinear Programming, Journal of Spacecraft and Rockets 55(1): 1–17. doi: 10.2514/1.A33905.
Chen, H.; Ho, K. 2018. Multi-Actor Analysis Framework for Space Architecture Commercialization, In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, Florida, USA. Available from Internet: https://doi.org/10.2514/6.2018-5410.
Chen, H.; du Jonchay, T.S.; Hou, L.; Ho, K. 2020. Integrated In-Situ Resource Utilization System Design and Logistics for Mars Exploration, Acta Astronautica 170: 80–92. doi: 10.1016/j.actaastro.2020.01.031.
Chen, H.; Gardner, B.; Grogan, P.; Ho, K. 2021. Flexibility Management for Space Logistics via Decision Rules, Journal of Spacecraft and Rockets 58(5): 1314-1324. https://doi.org/10.2514/1.A34985.
Cohen, E. 2021. Outer Space Mobilities and Human Health, Tourism Geographies. doi: 10.1080/14616688.2020.1868020.
Dachwald, B. 2004. Optimization of Interplanetary Solar Sailcraft Trajectories Using Evolutionary Neurocontrol, Journal of Guidance, Control and Dynamics 27(1): 66–72. doi: 10.2514/1.9286.
Do, S.; Shishko, R.; Antonelli, D.; Cichan, T.; Collom, R.; Conrad, P.; Coverstone, V.; Davis, R.; Edwards, C.; Fuller, M.; Goodliff, K., Hoffman, S.; Saikia, S.; Sheppard, P.; Shull, S.; Stone, D.; Whetsel, C. 2019. Logistics Is a Key Enabler of Sustainable Human Missions to Mars, Bulletin of the American Astronomical Society 51(2): 1–22.
Dorrington, S.; Olsen, J. 2019. A Location-Routing Problem for the Design of an Asteroid Mining Supply Chain Network, Acta Astronautica 157: 350–373. doi: 10.1016/j.actaastro.2018.08.040.
Douglas, G.L.; Wheeler, R.M.; Fritsche, R.F. 2021. Sustaining Astronauts: Resource Limitations, Technology Needs, and Parallels between Spaceflight Food Systems and Those on Earth, Sustainability 13(16): 9424. doi: 10.3390/su13169424.
Drake, B.G. 2009. Human Exploration of Mars – Design Reference Architecture 5.0. NASA/SP–2009–566, NASA Johnson Space Center, Houston, Texas.
Dreyer, C.B.; Abbud-Madrid, A.; Atkinson, J.; Lampe, A.; Markley, T.; Williams, H.; McDonough, K.; Canney, T.; Haines, J. 2018. A New Experimental Capability for the Study of Regolith Surface Physical Properties to Support Science, Space Exploration, and in Situ Resource Utilization (ISRU), Review of Scientific Instruments 89(6): 064502. doi: 10.1063/1.5023112.
du Jonchay, T.S.; Chen, H.; Wieger, A.; Szajnfarber, Z.; Ho, K. 2020. Space Architecture Design for Commercial Suitability: A Case Study in in-Situ Resource Utilization Systems, Acta Astronautica 175: 45–50. doi: 10.1016/j.actaastro.2020.05.012.
Fateri, M.; Kaouk, A.; Cowley, A.; Siarov, S.; Palou, M.V.; González, F.G.; Marchant, M.; Cristoforetti, S.; Sperl, M. 2018. Feasibility Study on Additive Manufacturing of Recyclable Objects for Space Applications, Additive Manufacturing 24: 400–404. doi: 10.1016/j.addma.2018.09.020.
Garden, L. 2022. The Future of Farming in Space, Modern Farmer. Available from Internet: https://modernfarmer.com/2022/02/the-future-of-farming-in-space.
George, K.W. 2019. The Economic Impacts of the Commercial Space Industry, Space Policy 47: 181–186. doi: 10.1016/j.spacepol.2018.12.003.
Gustafson, J.L. 2021. Space Nuclear Propulsion Fuel and Moderator Development Plan Conceptual Testing Reference Design, Nuclear Technology 207(6): 882-884. doi: 10.1080/00295450.2021.1890991.
Haroun, F.; Ajibade, S.; Oladimeji, P.; Igbozurike, J.K. 2021. Toward the Sustainability of Outer Space: Addressing the Issue of Space Debris, New Space 9(1): 63–71. doi: 10.1089/space.2020.0047.
Hein, A.M.; Pak, M.; Pütz, D.; Bühler, C.; Reiss, P. 2012. World Ships - Architectures & Feasibility Revisited, Journal of the British Interplanetary Society 65(4–5):119–133.
Hein, A.M.; Smith, C.; Marin, F.; Staats, K. 2020. World Ships: Feasibility and Rationale, Journal of the British Interplanetary Society 12: 75–104. doi: 10.5281/zenodo.3747333.
Ho, K.; Gerhard, K.; Nicholas, A.K.; Buck, A.J.; Hoffman, J. 2014. On-Orbit Depot Architectures Using Contingency Propellant, Acta Astronautica 96: 217–226. doi: 10.1016/j.actaastro.2013.11.023.
Isachenkov, M.; Chugunov, S.; Akhatov, I.; Shishkovsky, I. 2021. Regolith-Based Additive Manufacturing for Sustainable Development of Lunar Infrastructure – An Overview, Acta Astronautica 180: 650–78. doi: 10.1016/J.ACTAASTRO.2021.01.005.
Ishimatsu, T. 2013. Generalized Multi-Commodity Network Flows: Case Studies in Space Logistics and Complex Infrastructure Systems. Massachusetts Institute of Technology, Massachusetts, USA.
Jacob, P.; Shimizu, S.; Yoshikawa, S.; Ho, K. 2019. Optimal Satellite Constellation Spare Strategy Using Multi-Echelon Inventory Control, Journal of Spacecraft and Rockets 56(5): 1449-1461. doi: 10.2514/1.A34387.
Jakhu, R.S.; Nyampong, Y.O.M.; Sgobba, T. 2017. Regulatory Framework and Organization for Space Debris Removal and on Orbit Servicing of Satellites, Journal of Space Safety Engineering 4(3–4):129–137. doi: 10.1016/j.jsse.2017.10.002.
Jones, H.W. 2018. The Recent Large Reduction in Space Launch Cost. In Proceedings of the 48th International Conference on Environmental Systems - CES-2018-81, Albuquerque, New Mexico, USA.
Kalapodis, N.; Kampas, G.; Ktenidou, O.J. 2020. A Review towards the Design of Extraterrestrial Structures: From Regolith to Human Outposts, Acta Astronautica 175: 540–569. doi: 10.1016/j.actaastro.2020.05.038.
Landry, K.S.; Morey, J.M.; Bharat, B.; Haney, N.M.; Panesar, S. 2020. Biofilms—Impacts on Human Health and Its Relevance to Space Travel, Microorganisms 8(7): 998. doi: 10.3390/microorganisms8070998.
Levchenko, I.; Bazaka, K.; Mazouffre, M.; Xu, S. 2018. Prospects and Physical Mechanisms for Photonic Space Propulsion, Nature Photonics 12: 649–657. doi: 10.1038/s41566-018-0280-7.
Linne, D.L.; Sanders, G.B.; Starr, S.O.; Eisenman, D.J.; Suzuki, N.H.; Anderson, M.S.; O’Malley, T.F.; Araghi, K.R. 2017. Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU). In Proceedings of the 68th International Astronautical Congress (IAC), Adelaide, Australia.
Liu, J.; McInnes, C.R. 2019. Resonant Space Tethered System for Lunar Orbital Energy Harvesting, Acta Astronautica 156: 23–32. doi: 10.1016/j.actaastro.2018.08.037.
Lordos, G.; Lordos, A. 2019. Star City: Designing a Settlement on Mars, 22nd Annual Mars Society Convention, Los Angeles, California.
Mahon, P.J. 2020. Worldships - Some Ecological and Resource Constraints, Journal of the British Interplanetary Society 73: 21–25.
Medina, F.J. 2020. Growing Plants in Human Space Exploration Enterprises, Acta Futura 12: 151–163. doi: 10.5281/zenodo.3747367.
Meurisse, A., Makaya, A.; Willsch, C.; Sperl, M. 2018. Solar 3D Printing of Lunar Regolith, Acta Astronautica 152: 800–810. doi: 10.1016/j.actaastro.2018.06.063.
Monje, O.; Stutte, G.W.; Goins, G.D.; Porterfield, D.M; Bingham, G.E. 2003. Farming in Space: Environmental and Biophysical Concerns, Advances in Space Research 31(1): 151–167. doi: 10.1016/S0273-1177(02)00751-2.
Musk, E. 2017. Making Humans a Multi-Planetary Species, New Space 5(2): 46–61. doi: 10.1089/space.2017.29009.emu.
Notteboom, T.; Parola, F.; Satta, G.; Risitano, M. 2017. A Taxonomy of Logistics Centres: Overcoming Conceptual Ambiguity, Transport Reviews 37(3): 276–299. doi: 10.1080/01441647.2016.1231234.
Padwal, M.B.; Natan, B.; Mishra, D.P. 2021. Gel Propellants, Progress in Energy and Combustion Science 83: 100885. doi: 10.1016/j.pecs.2020.100885.
Patel, I.K.; Tikhonov, A.A. 2021. Dynamics and Control of an Electrodynamic Tug: Transfer to the Graveyard Orbit, Acta Astronautica 183: 310–318. doi: 10.1016/j.actaastro.2021.03.024.
Peloni, A.; Dachwald, B.; Ceriotti, M. 2018. Multiple Near-Earth Asteroid Rendezvous Mission: Solar-Sailing Options, Advances in Space Research 62(8): 2084–2098. doi: 10.1016/j.asr.2017.10.017.
Perchonok, M.H.; Cooper, M.R.; Catauro, P.M. 2012. Mission to Mars: Food Production and Processing for the Final Frontier, Annual Review of Food Science and Technology 3: 311–330. doi: 10.1146/annurev-food-022811-101222.
Pražák, J. 2021. Dual-Use Conundrum: Towards the Weaponization of Outer Space? Acta Astronautica 187: 397-405. doi: 10.1016/j.actaastro.2020.12.051.
Raguraman, S.; Sarath, R.N.S.; Varghese, J. 2020. Space Debris Removal: Challenges and Techniques-A Review. In Proceedings of the 8th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO 2020), Amity University, Noida, India, 1361–1366.
Sacco, E.; Moon, S.K. 2019. Additive Manufacturing for Space: Status and Promises, International Journal of Advanced Manufacturing Technology 105: 4123–4146. doi: 10.1007/s00170-019-03786-z.
Sherwood, B. 2017. Space Architecture for MoonVillage, Acta Astronautica 139: 396–406. doi: 10.1016/j.actaastro.2017.07.019.
Shi, G.; Li, G.; Zhu, Z.H. 2020. Libration Suppression of Moon-Based Partial Space Elevator in Cargo Transportation, Acta Astronautica 177: 96–102. doi: 10.1016/j.actaastro.2020.07.024.
Smith, R.; Jonckers, D. 2020. Semi Automating the Creation of a Martian Base Using Engineering Rovers Introduction, Journal of the British Interplanetary Society 73: 49–54.
Smitherman, D.; Woodcock, G. 2011. Space Transportation Infrastructure Supported by Propellant Depots. In Proceedings of the AIAA SPACE Conference and Exposition 2011, Long Beach, California, USA, 1-24.
Snead, M. 2004. Architecting Rapid Growth in Space Logistics Capabilities. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Fort Lauderdale, Florida, USA. doi: 10.2514/6.2004-4068.
Spector, S. 2020. Delineating Acceptable Risk in the Space Tourism Industry, Tourism Recreation Research 45(4): 500–510. doi: 10.1080/02508281.2020.1747798.
Spector, S.; Higham, J.E.S.; Doering, A. 2017. Beyond the Biosphere: Tourism, Outer Space, and Sustainability, Tourism Recreation Research 42(3): 273–283. doi: 10.1080/02508281.2017.1286062.
Spector, S.; Higham, J.E.S.; Gössling, S. 2020. Extraterrestrial Transitions: Desirable Transport Futures on Earth and in Outer Space, Energy Research & Social Science 68: 101541. doi: 10.1016/j.erss.2020.101541.
Stahl, H.P.; Sumrall, P.; Hopkins, R. 2009. Ares V Launch Vehicle: An Enabling Capability for Future Space Science Missions, Acta Astronautica 64(11–12): 1032–1040. doi: 10.1016/j.actaastro.2008.12.017.
Starr, S.O.; Muscatello, A.C. 2020. Mars in Situ Resource Utilization: A Review, Planetary and Space Science 182: 104824. https://doi.org/10.1016/j.pss.2019.104824.
Szocik, K.; Lysenko-Ryba, K.; Banaś, S.; Mazur, S. 2016. Political and Legal Challenges in a Mars Colony, Space Policy 38: 27–29. doi: 10.1016/j.spacepol.2016.05.012.
Tadić, S. 2014. Modelling of Integrated City Logistics Systems Performances (PhD Thesis), University of Belgrade, Faculty of Transport and Traffic Engineering.
Tadić, S.; Zečević, S. 2016. Modelling City Logistics Concepts (in Serbian). University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia. ISBN: 978-86-7395-352-6.
Tartaglia, A.; Lorenzini, E.C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M.L.; Valko, P. 2018. How to Use the Sun–Earth Lagrange Points for Fundamental Physics and Navigation, General Relativity and Gravitation 50(1): 1-21. doi: 10.1007/s10714-017-2332-6.
Thirsk, R.; Kuipers, A.; Mukai, C.; Williams, D. 2009. The Space-Flight Environment: The International Space Station and Beyond, Canadian Medical Association Journal 180(12): 1216–1220. doi: 10.1503/cmaj.081125.
Tkatchova, S. 2018. Emerging Space Markets. Springer, Berlin, Heidelberg. ISBN: 978-3-662-55669-6.
Volger, R.; Pettersson, G.M.; Brouns, S.J.J.; Rothschild, L.J.; Cowley, A.; Lehner, B.A.E. 2020. Mining Moon & Mars with Microbes: Biological Approaches to Extract Iron from Lunar and Martian Regolith, Planetary and Space Science 184: 104850. doi: 10.1016/j.pss.2020.104850.
Williams, H.; Butler-Jones, E. 2019. Additive Manufacturing Standards for Space Resource Utilization, Additive Manufacturing 28: 676–681. doi: 10.1016/j.addma.2019.06.007.
Yazici, A.M.; Tiwari, S. 2021. Space Tourism: An Initiative Pushing Limits, Journal of Tourism Leisure and Hospitality 3(1): 38-46. doi: 10.48119/toleho.862636.
Zečević, S. 2006. Logistics Centres and Freight Villages (in Serbian). University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia. ISBN: 978-86-7395-216-1.
Quoted IJTTE Works
There is no quoted studies.
Related Keywords
There is no related studies.