Article
ESTIMATION OF OPTICAL ACCESS NETWORK BANDWIDTH DEMAND USING MONTE CARLO SIMULATION
DOI: 10.7708/ijtte.2015.5(4).04
5 / 4 / 384-399 Pages
Author(s)
Branka Mikavica - University of Belgrade, Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, 11000 Belgrade, Serbia -
Abstract
Continuous forecast of bandwidth demand in order to achieve a proper network planning and dimensioning is one of the key challenges that network operators need to deal with. The importance of this issue is highlighted with the necessity of proper decision making regarding capital investments and the permanent increase in traffic volume. Under-investing in network resources lead to low network performances and hence dissatisfied customers, while over-investing may cause over-dimensioned capacities which leads to lower resource utilization and opportunity losses. In that perspective, it is essential to determine whether current network capacities satisfy bandwidth requirements. If it does, determining relevant time period is of great significance. As the bandwidth demand increases by the development of new services, the existing broadband networks need to be upgraded. The growing bottleneck can be solved rolling out optical access network. These networks are characterized by greater bandwidth supply enhancement compared to bandwidth demand. That fact emphasizes the need of appropriate bandwidth forecast. This paper presents model for in optical access networks future bandwidth demand and network resource utilisation estimation. In order to appropriately address valid demand of all households in a given area, Monte Carlo simulation is applied.
Number of downloads: 2379
Acknowledgements:
This work is partially supported by Ministry of Education, Science and Technological Development of the Republic of Serbia under No. 32025.
References:
Bauschert, T.; Büsing, C.; D'Andreagiovanni, F.; Koster, A.C.A.; Kutschka, M.; Steglich, U. 2014. Network Planning under Demand Uncertainty with Robust Optimization, IEEE Communications Magazine. DOI: http://dx.doi.org/10.1109/MCOM.2014.6736760, 52(2): 178-185.
BEREC Report BoR (12) 130. 2012. Available from Internet: http://berec.europa.eu/eng/document_register/subject_ matter/berec/reports/1130-an-assessment-of-ip-interconnection-in-the-context-of-net-neutrality.
Booker, G.; Sprintson, A.; Singh, C.; Guikema, S. 2008. Efficient availability evaluation for transport backbone networks. In Proceedings of International Conference on Optical Network Design and Modeling (ONDM). DOI: http://dx.doi.org/10.1109/ONDM.2008.4578386, 1-6.
Cisco Visual Networking Index. 2015. Available from Internet: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf.
FTTH Council - Definition of Terms. 2015. Available from Internet: http://www.ftthcouncil.eu/documents/Publications/FTTH_Definition_of_Terms-Revision_2015-Final.pdf.
FTTH Council - Handbook. 2014. Available from Internet: http://www.ftthcouncil.eu/documents/Publications/FTTH-Handbook_2014-V6.0.pdf.
Gerstel, O.; Cisco, I.; Jinno, M.; Lord, A.; Yoo, S.J.B. 2012. Elastic Optical Networking: A New Dawn for the Optical Layer?, IEEE Communications Magazine. DOI: http://dx.doi.org/10.1109/MCOM.2012.6146481, 50(2): 12-20.
Grabner, M.; Kvicera, V. 2014. Multiple scattering in rain and fog on free-space optical links, IEEE/OSA Journal of Lightwave Technology. DOI: http://dx.doi.org/10.1109/JLT.2013.2294356, 32(3): 513-520.
Harstead, E.; Sharpe, R. 2015. Forecasting of Access Network Bandwidth Demands for Aggregated Subscribers Using Monte Carlo Methods, IEEE Communications Magazine. DOI: http://dx.doi.org/10.1109/MCOM.2015.7060505, 53(3): 199-207.
Jiqiang, W.; Yipeng, Z.; Dah Ming, C.; Youwei H.; Zirong Z. 2014. Modeling Dynamics of Online Video Popularity. Available from Internet: http://arxiv.org/pdf /1412.2326.pdf.
Kalos, M.H.; Whitlock, P.A. 2008. Monte Carlo Methods, Wiley Black Well. 217 p.
Kretsis, A.; Christodoulopoulos, K.; Kokkinos, P.; Varvarigos, E. 2014. Planning and Operating Flexible Optical Networks: Algorithmic Issues and Tools, IEEE Communications Magazine. DOI: http://dx.doi.org/10.1109/MCOM.2014.6710065, 52(1): 61-69.
Kulkarni, S.; El-Sayed, M.; Gagen, P.; Polonsky, B. 2010. FTTH network economics: Key parameters impacting technology decisions. In Proceedings of the 13th International Symposium on Telecommunications Networks Strategy and Planning. 1-27.
Lannoo, B.; Casier, K.; Van Ooteghem, J.; Wouters, B.; Verbrugge, S.; Colle, D.; Pickavet, M.; Demeester, P. 2008. Economic Benefits of a Community Driven Fiber to the Home Rollout. In Proceedings of the 5th International Conference on Broadband Communications, Networks and Systems (BROADNETS). 436-443.
Miletic, V.; Mikac, B.; Dzanko, M. 2013. Impact Evaluation of Physical Length of Shared Risk Link Groups on Optical Network Availability Using Monte Carlo Simulation. In Proceedings of European Conference on Optical Cabling and Infrastructure (OC&I). 249-256.
Nielsen's Law of Internet Bandwidth. 2014. Available from Internet: http://www.nngroup.com/articles/law-of-bandwidth.
Reyes, R.; Rong, Z.; Mas Machuca, C. 2014. Advanced Dynamic Migration Planning toward FTTH, IEEE Communications Magazine. DOI: http://dx.doi.org/10.1109/MCOM.2014.6710067, 52(1): 77-83.
Rokkas, T.; Katsianis, D.; Kamalakis, T.; Varoutas, D.; Sphicopoulos, T. 2014. Evaluation of FSO and FTTH technologies using techno-economic and risk analysis, Info. DOI: http://dx.doi.org/10.1108/14636690910955006, 11(3): 87-96.
Serena, P.; Rossi, N.; Bertolini, M.; Bononi, A. 2009. Stratified Sampling Monte Carlo Algorithm for Efficient BER Estimation in Long-Haul Optical Transmission Systems, Journal of Lightwave Technology. DOI: http://dx.doi.org/10.1109/JLT.2008.2010560, 27(13): 2404-2411.
Simmons, J.M. 2014. Optical Network Design and Planning. Springer, Inc. USA. 529 p.
Song, Y.; Kuipers, F.A. 2014. Traffic Uncertainty Models in Network Planning, IEEE Communications Magazine. DOI: http://dx.doi.org/10.1109/MCOM.2014.6736759, 52(2):172-177.
Tahon, M.; Ooteghem, J-V.; Casier, K.; Verbrugge, S.; Colle, D.; Pickavet, M.; Demeester, P. 2014. Improving the FTTH business case – A joint telco-utility network rollout model, Telecommunications Policy. DOI: http://dx.doi.org/10.1016/j.telpol.2013.01.004, 38(5-6): 426-437.
Weiran, S.; Zuqing, Z.; Mingyang, Z.; Ansari, N. 2013. On the Effect of Bandwidth Fragmentation on Blocking Probability in Elastic Optical Networks, IEEE Transactions on Communications. DOI: http://dx.doi.org/10.1109/TCOMM.2013.053013.120853, 61(7): 2970-2978.
Wosinska, L.; Colle, D.; Demeester, P.; Katrinis, K.; Lackovic, M.; Lapcevic, O.; Lievens, I.; Markidis, G.; Mikac, B.; Pickavet, M.; Puype, B.; Skorin-Kapov, N.; Staessens, D.; Tzanakaki, A. 2009. Network Resilience in Future Optical Networks. In Towards Digital Optical Networks. DOI: http://dx.doi.org/10.1007/978-3-642-01524-3_10, 253-284.
Quoted IJTTE Works
There is no quoted studies.
Related Keywords