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Abstract: This article is concerned with stochastic inventory control problems with backlog 
sales in stock-out situations. We examine an infinite horizon model for piecewise linear 
concave ordering costs. Unlike finite horizons, however, infinite horizons lead to a functional 
equation for the value function. Such functional equations are solved numerically. Here we 
give a rigorous theory which explicitly solves this functional equation. We consider both 
the scenario in which an optimal selection can be made among two suppliers, as well as the 
scenario in which inventory can be purchased with incremental quantity discounts from a 
single supplier. We provide conditions that guarantee the optimality of standard  policy. 
Moreover, when these conditions fail to hold, we show that an extended four parameter 
policy is optimal.
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1. Introduction

This paper focuses on the widely used (s, 
S) inventory policy under general demand 
distributions and fixed ordering costs. In 
(s, S) inventory policy, an order is placed 
when the inventory level falls to the reorder 
point s or lower so that inventory can be 
replenished to the level S. We consider an 
infinite-horizon problem with instantaneous 
deliver systems. Our cost function considers 
two supplier inventory problems as well as 
single supplier inventory problems with 
quantity discounts. In Bensoussan et al. 
(2020), a similar cost function was studied 
for lost sales cases. In this paper we consider 
a backlog sales strategy, i.e., if any excess 

demand beyond the available stock occurs, 
then either an emergency order will be placed 
or the excess amount will be added to the 
next ordering cycle.

A substantial body of research exists in the 
discipline of inventory control. The classical 
inventory (s, S) policy was introduced by 
Scarf (1960), where he studied a fixed cost 
and a linear variable unit cost and proved the 
optimality of (s, S) policy. In 1966, Veinott 
introduces a new proof technique which 
resulted in a similar theorem as that of Scarf 
(1960), wherein he replaced Scarf ’s convex 
cost assumption by a weaker assumption that 
the negative of expected costs are unimodal. 
Our problem is concerned with piecewise 
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concave ordering costs. Porteus (1971) was 
the first to study problems with this kind 
of cost structure. Later on, Benjaafar et al. 
(2018) explored this inventory problem with 
a finite horizon and general demand. They 
used the notion of generalized K -convexity 
to show its optimality, and conjectured 
the optimality under horizons which are 
sufficiently long. We refer the reader to 
(Chen and Simchi-Levi 2012; Karlin and 
Fabens, 1960; Singha et al., 2017) for more 
information on the concave cost function 
and/or backlog sales. The first reference in 
particular has an extensive bibliography on 
the subject.

There is abundant literature available in 
the area of backlog sales - see, for instance 
Karlin and Fabens (1960), Beyer et al. (1998), 
Ozekici and Parlar (1999), Sethi and Cheng 
(1997), and Song and Zipkin (1993) are 
mentioned some of them. The problem 
studied in this paper also has the feature of 
concave ordering costs. Such ordering costs 
are frequent in applications. For example, the 
cost function, when incremental discounting 
is applied, is represented by a piecewise 
concave function. We refer the reader to 
Chen et al. (2005), Huh and Janakiraman 
(2008), and Song et al. (2009) for more on 
concave cost functions.

This article corresponds to the (s , S) 
policy and generalized (s, S) policy with 
a variety of modifications of the classical 
work of Scarf and the cost function he 
considered. Specifically we address two 
different situations with regards to the cost 
structure for backlog model. The first one is 
the classical case involving only one linear 
segment to illustrate our methodology in 
proving the optimality of the well known (s, 
S) policy. Here we offer a rigorous theory of 
solving stationary infinite-horizon optimal 

inventory control problems with general 
demands and cost parameters satisfying 
some technical assumptions usual in infinite-
horizon settings. It is important to mention 
that our methodology does not require the 
notion of K-convexity, introduced in Sethi 
and Cheng (1997) and used commonly in 
the literature.

The second situation is the case of two 
suppliers, first of whom charges a positive 
fixed ordering cost plus a proportional cost 
and the second one charges a higher fixed 
cost plus a lower proportional cost. Here 
we restrict only an exponential demand. 
In this case, we show that an extended (s, 
S) policy, called a  policy, where 

, is optimal. According to this 
policy if the beginning inventory is more 
than  and less or equal to s, then order up 
to ; if it is less or equal to , then order 
up to S; and if it is more than s, then do 
not order. Moreover, we obtain these four 
parameters explicitly due to the simplicity 
of the exponential demand.

We formulate the Bellman equation which 
in the infinite horizon case becomes a 
functional equation. We provide a rigorous 
mathematical theory to solve this functional 
equation and show that the optimality of the 
(s, S) policy for inventory control problems 
with piecewise linear concave ordering costs. 
The theory is constructive and does not rely 
on the notion of K -convexity. We allow 
demand distributions which are more general 
than those considered by Porteus (1971). 
Furthermore, we prove the conjecture of 
Benjaafar et al. (2018) about the infinite-
horizon setting. While we examine only 
the case of dual suppliers in this article, our 
methodology is more general and can be used 
to extend the results to situations with an 
arbitrary number of suppliers.
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2. Formulation of Problem

The generalization of the cost structure concerns the ordering cost, which is now the 
concave function  given by the formula:

 (1)

With the conditions , where  is the total 
amount of order,  and  is the per unit cost and fixed cost respectively of the  supplier. 
We begin with the assumption that our cost function is piecewise linear concave comprised 
of two pieces, See in the Fig. 1. To provide a practical justification for choosing , we 
claim that the structure of equation (1) applies not just to the problem of choosing among 
several suppliers, but can also represent the situation of rebates for large quantities in the 
case of a single supplier. Assume that  in equation (1), and let . 
From here, one can readily verify that

 (2)

If the volume is greater than , we observe that the variable ordering cost  will reduce 
to . Here, as usual  is an indicator function. 

Fig. 1.
The Graph of Cost Function given in Eq. (1) for n=2

Denote by  the initial inventory and let  denote the inventory once the order has been 
received. We denote the generic demand by D. D is a random variable with  as its 
probability density function. The  is the cumulative distribution function of 
D. We note that the complement of  is . We denote with  the expected 
value of the discounted costs for an inventory problem. Then,  satisfies the following 
Bellman: 
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 (3)

Functional equation where h and p represents the holding cost and penalty cost respectively. 
We apply the transformation:

 (4)

to the preceding equation, where  is an arbitrary constant. Substituting eq. (4) into eq. 
(3) results in the following equation for :

 (5)

Where,

 (6)

The idea is to find an optimal policy in order to minimize the expected total discounted 
cost or in other words, to achieve the minimum on the right hand side of eq. (5).

2.1. Primary Discussion

The above described problem is an extension of the following classical problem, corresponding 
to . We write  and , then eq. (5) specializing in:

 (7)

which leads to the classical (s, S) policy solution. We describe brief ly how to proceed in 
this classical case, to foresee the steps for the extension to (5). The solution is described 
as follows. For any , take  and solve for , the solution of:

 (8)

Since  is a convex function,  attains its minimum at a point (if there are several 
points we will take the smallest one). We define the minimum point to be S so that:

 (9)

Then define s so that:

 (10)
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A unique s can be defined, to which one associates . This is the well known  
(s, S) policy.

2.2. Rewriting Bellman Equation

Considering the case , one can expect that as  is small, we expect to find a  
policy that is optimal. To do so, we begin by rewriting the Bellman functional equation 
defined in eq. (5) as follows:

 (11)

To see that th is reduces to a (s , S) pol ic y of t wo parameters, we show that 

 can be eliminated from eq. 
(11) as follows:

 
(12)

In the next section we set out the sufficient conditions for optimality and show that there 

exists a pair  that satisfy eq. (12) and hence  policy is optimal.

3. Optimality of  Policy

Analogous to the case where , for any  we take  and solve the 
problem:

   (13)

To obtain a solution to the above equation, we fix s such that:
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(11) as follows:

 
(12)

In the next section we set out the sufficient conditions for optimality and show that there 

exists a pair  that satisfy eq. (12) and hence  policy is optimal.

3. Optimality of  Policy

Analogous to the case where , for any  we take  and solve the 
problem:

   (13)

To obtain a solution to the above equation, we fix s such that:

 (14)

We take the derivative of (13) with respect to x and obtain:

 (15)

As  is bounded, we have a contraction problem. Therefore, by the Contraction 
Mapping Theorem, we know that the function has a unique fixed point. Accordingly, the 

above problem has exactly one solution. Since  but , we 

have that  is not continuous at s. But we can make  continuous by letting  

such that , which implies that , and therefore,

 (16)

From equation (6), we observe that:

 (17)

Next, we assume that

 (18)

Then, since , the function  must be increasing from  to 

. Therefore, . From equation 
(15) it follows that:

 (19)
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Moreover, . Therefore, the function  is defined by:

 (20)

 goes to  as  goes to , and since  is continuous, we have that the function 
attains its minimum on the interval . Therefore, we claim that there exists a unique 

 such that:

 (21)

We will necessarily have that  , for otherwise if  then we would have 
that . We want to find  such that  is a solution of

 (22)

Of course, , which implies that

 (23)

This suggests that  is small. From the inequality , the definition of , and equation 
(15), we can conclude that  if  Therefore,  is decreasing 
on . Hence:

 (24)

So we can write eq. (22) as:

 (25)

Lemma 1: We claim that

 (26)
is increasing on 

Proof: Indeed, writing eq. (15) as:

 (27)

we see that   is a solution to the equation
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 (28)

For , we have that . Therefore, ,  

Next  and  because of the optimality of S(s). 

Moreover,  and

 (29)

This result is true because  is a constant . Finally, since  
is increasing on s and it is  at , the integral evaluates to  when . This 
proves the property asserted in (26). So, it is clear that there exists a single  for which 

. Now we can state the following:

Proposition 2: Assume that inequalities (18) and (23) hold. Then there exists a unique 
 which is a solution of eq. (25) with  uniquely defined by eq. (13). The 

solution of equation (13) is given by eq. (20).

We want now to check that the solution  is a solution to our original problem, (11), 
with . Denoting , this defines the  policy that we will 
show to be optimal. Doing so will require use of the following theorem.

Theorem 3: In addition to the assumptions of Proposition 2, assume that

 (30)

Then the function  is a solution to equation (11), with .

Proof: Lacking the assumption that (16) holds, we can still prove that  is solution 
of (12). That is, we can show that:

 (31)

Now assume that . Then  and , since 
 decreases whenever . Next, if , then:

 (32)
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since . Therefore, the right hand side of (31) is 0, which is indeed 
the value of  when . Accordingly,  is solution of (31) when . 
When 

 (33)

Thus,  is a solution of (31) when . If , then (31) implies that:

 (34)

To check (34) we must prove that:

 (35)

But we have:

 (36)

Which is a classical result. For more details we refer the reader to the similar proof in 
Bensoussan (2011), when the case is .

So far we have proven that  is a solution of (31) which means that it is also a solution 
of equation (12) with . The assumption of (30) was not needed for this. 

To prove that  is a solution of equation (11), it remains to be proven that:

 (37)

If , then equation (37) can be rewritten as:

 (38)

Which we know to be true because  for . So we may assume 
. If  then eq. (37) means that:

 (39)
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On account of assumption (30) and the fact that estimate (19) means that the function 
 is monotone increasing when . So, (37) is true if  or 

. Finally, if , (37) means that:

 (40)

Which previous arguments have shown to be true. This completes our proof.
The significance of equation (30) is brief ly summarized in the following remark:

Remark: Assumption (30) serves to ensure that a standard (s, S) policy will be optimal, 
and requires the penalty cost to be small. Assumption (30) ensures that  is a solution 
of eq. (11). Moreover, since (30) implies that , we have that . Therefore, 
any purchase from supplier 1 will cost  in addition to any fixed cost. On the other hand, 
electing to not meet the demand will only cost p, which is less than . In such a situation, 
orders will only be placed with the second supplier. Furthermore, if we make  small solely 
by increasing  and/or , then the optimal policy is exactly the (s, S) policy of the classical 
problem with only the second supplier. This will hold for every  as long as it is small and 
(30) continues to hold. Therefore, we have shown that the  policy is optimal.

On the other hand when , which necessarily means that (30) is violated, we will 
show in the next section that an extended (s, S) policy is optimal.

4. Extended  Policy

The result of Section 3 relied heavily upon the assumption (30). If assumption (30) is not 
satisfied, we cannot guarantee that a standard (s, S) policy is optimal. In this case, we 
look for an extended (s, S) policy. In this section, we assume the demand density to be 
exponential and we will explicitly show that a four parameter  policy is optimal.

4.1. Problem Formulation

At this stage, we look for a solution of equation (11) of the following form: there are two 
numbers  with  and the function  satisfies:

 (41)

The function  is continuous. Therefore, the values of  and  are given by the 
above conditions. We first have from the first two parts of equation (41), that

 (42)
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From the third segment we get:

 (43)

Next we integrate equation (43) and plugging the expressions of first two segments of (41) 
into (43). After all that, simplify equation (43), and it becomes

 (44)

So, for , the function  is solution of the integral equation:

 (45)

Clearly, the function  is completely defined once the constants  are fixed. To 
define  and , we impose the following two conditions:

 (46)

 (47)

Next, we need to show that equations (46) and (47) in the unknowns  
define them completely, and that the corresponding function  solves equation 
(11), with  We then associate to the pair  the numbers  which 
realize the infimum in the right hand side of (46), (47) respectively. The four parameter 

 will be the extended policy solving the problem.

Now to study the equation (45) we first define the derivative in the form of:

 (48)

Since we assume , the integral equation (48) becomes:

 (49)

It has an explicit solution given by:

 (50)
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This equation has one and only one solution, on  The next step is to find the 
function . For fixed  we define , by solving the algebraic equation:

 (51)

and finally, we search for  as the solution of the algebraic equation:

 (52)

If we are able to solve equation (51) and (52), then we need to prove that the  satisfies:

 (53)

to guarantee that  is the solution of eq. (5).

4.2. Preliminary Calculation

First, we need to find the function  by solving equation (51). We expect that the 
infimum on the right-hand side of equation (51) is attained at a point  inside the interval 

 Therefore, we have  which along with equation (50) yields

 (54)

Also eq. (51) becomes to , which yields:

 (55)

Eq. (54) and (55) give  and  as functions of  For convenient we define:

 (56)
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Then, from (54) and (55) we find:

 (57)

It has a unique solution  and this is a fixed constant independent of . Therefore, 
we obtain  by:

 (58)

We naturally need  sufficiently small. Specifically, we need  with:

 (59)

In order to get  we need the condition:

 (60)

and  We have also  with:

 (61)

Assumption (60) implies immediately . Recall the definition of , that is , 
to obtain

 (62)

In view of  comparing equations (61) and (62) yields . Summarizing 
we have:

Proposition 4: Assume (60), i.e., . Then for   is uniquely 

defined by (58), i.e., 
,
 and it decreases from  to  We further 

have 

Next,  is defined by (54), which reads as:

 (63)
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We can also define  by the condition  From (50) and (56), we have

 (64)

Therefore,

 (65)

Looking at the form of (49) and noting  we can assert

 (66)

For , we have . Hence,

 (67)

Also from eq. (56):

 (68)

From (67) and (68), we see that:

 (69)

which implies necessarily . Calling  , we can write the equation 
for  as

 (70)

Hence, for , we have:

 (71)
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We introduce the number  defined by

 (72)

We can show, just as we had showed , that .

4.3. Formulae for 

Calling , the function constructed in the previous section, we can see by the above 
results that:

 

 (73)

We find  by the equation:

 (74)

and therefore,

 

 (75)

Since the function  is decreasing in  a unique solution of (75) exists 
provided that  satisfies the conditions

 (76)

This means that

 (77)
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where  and . Once  is defined, we can solve (75) to obtain 
the quantity  within it and then obtain ,  and  explicitly. Specifically the next 
equation gives  in terms of  and .

 (78)

Then we use the next two equations to obtain  and :

 (79)

 (80)

Now the function  is defined by the formulae

 (81)

With

, (82)

and

 (83)

Therefore, the four parameters  are defined explicitly. We next show the 
optimality of the  policy.

4.4. Optimality of  Policy

We begin by verifying the following proposition.

Proposition 5: We have the inequality

 (84)
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Proof: From (75), we can write . We use the last equation in (81) 
to compute

 (85)

Using (80), and (57), we obtain

 . (86)

Using (83) we can assert

 (87)

Finally, by using the definition of  and (80), we obtain the inequality (84).
Then a calculation, which is omitted for brevity, yields the following result:

Theorem 6: Assume
•  (60), i.e.,  
•  (76), i.e. 
•  .
•  . Then the function  defined by (81), with  and  defined by (75) and (78), 

is the solution of the equation (5) with .

Remark: The structure of extended (s, S) optimal ordering policy is as follows:
• If the beginning inventory level is less or equal to , then order up to .
• If the beginning inventory level is less or equal to  but more than , then order up to .
• If the beginning inventory level is more than , then do not order.

5. Conclusion

In this article, we examined a stochastic 
inventory model for an infinite horizon 
problem in which the ordering cost is 
piecewise linear. We analyzed the model 
for backlog sales cases. We offered a rigorous 
mathematical theory and set the conditions 
which are sufficient to show that  
policy is optimal. The crucial assumption 
(30) eliminated the possibility that the 

minimum on the right hand side of equation 
(11) will be attained by the second term. If we 
do not make this assumption, this possibility 
is no longer excluded, leading to an extended 
optimal policy which is more complex. In this 
case we showed that a four parameter policy 
is optimal. Even though this generalization 
was analyzed only for exponential demand 
distributions, the theory we provided is 
constructive and can be extended for general 
demand distributions. Our theory did not 

339

Helal M. A. et al. A Mathematical Method for Optimal Inventory Policies with Backlog Sales



rely on K -convexity. This approach has the 
advantage of giving an explicit functional 
equation for the value function. 

Although we have examined this inventory 
control problem only for a situation with two 
suppliers, our method is general and can be 
extended to an arbitrary number of suppliers 
using a similar approach. Of course, the 
technical details are accordingly more intricate.
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