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Abstract: This study investigates driving behavior under distraction on four different road 
classes – freeway, urban arterial, rural, and local road in a school zone – using a high-fidelity 
driving simulator. Some 92 younger participants from a reasonably diverse sociodemographic 
background drove a realistic midsize network in the Baltimore metropolitan area and were 
exposed to different distractions. A total of 1,952 simulation runs were conducted. An ANOVA 
and Tukey Post Hoc analysis showed that distracted driving behavior demonstrates different 
patterns on various roads. This research developed a support vector machine model that 
achieved distraction prediction ability among different routes with an accuracy of 94.24%, 
which to the best of our knowledge, is the best for such a task. The results indicate that driver 
distraction prediction models probably would be more accurate if developed separately for 
each road class.
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1. Introduction

One of the most significant traffic safety 
problems is driver distraction. According 
to the National Highway Traffic Safety 
Administrat ion (NHTSA), 9% of the 
37,133 fatal crashes are attributed to driver 
distraction, which involved 2,994 distracted 
drivers in 2017 (NHTSA, 2015). The 
distraction problem is getting worse due to 
the increasing use of in-vehicle information 
systems such as GPS navigation systems, 
cellphones, and satellite radios (Lee et al., 
2001; Strayer et al., 2003). Modern vehicles 
(Ebnali et al., 2020) are filled with driver-
assistance technology such as a navigator, 

multimedia displays, climate control, parking 
radar, and many more. Although drivers 
benefit from such modern driving assistance 
technologies (Ahangari et al., 2018, 2019), it 
is still critical for drivers to avoid distraction 
and pay suitable attention to the road.  

It was shown previously that wireless devices, 
conversations with a passenger, and in-
vehicle distraction are the significant sources 
of incidents (Haigney & Westerman, 2001). 
Also, the growing use of mobile phones while 
driving, which takes the driver’s attention 
away from the primary task of driving, has 
increased the number of traffic incidents 
and crashes (Mokhtarimousavi et al., 2020). 
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According to the NHTSA, about 5.3% of 
drivers used either hands-free or hand-held 
phones while driving at a typical daylight 
moment in 2017 (NHTSA, 2015).  

Driver distraction happens when an object or 
event attracts a person’s attention away from 
the driving task. Distraction deteriorates 
driving performance by diverting the driver’s 
eyes from the road (Visual distraction) like 
adjusting the GPS (Haigney & Westerman, 
2001) or taking the driver’s mind off the 
driving task (cognitive distraction) like 
conversing on a hands-free cel lphone 
(Recarte & Nunes, 2003). Besides talking on 
the phone or to a passenger and interacting 
with in-vehicle information technologies 
like a navigation system, other distracting 
activities are adjusting the radio, online 
shopping, makeup, eating, and drinking. 
Several researchers investigated the impact 
of different types of distraction on driving 
behavior, including interacting with a phone 
(Motamedi et al., 2015; Ranney et al., 2005, 
2001), reading (text message and email) 
(Ranney et al., 2001), navigation tasks (Burns 
et al., 2005; Ranney et al., 2001), interacting 
with a music player (Ranney et al., 2005, 
2001), memor y tasks, and classi f y ing 
sentences (Chaparro et al., 2005; Hurwitz 
& W heatley, 2001). In addition to the 
type of distraction, the impact of different 
distracting tasks depends on several other 
factors such as experience (Chisholm et 
al., 2008), fatigue (Desmond & Matthews, 
1997), road conditions (e.g., curves, turns, 
crossings, and amount of traffic) (Ihata et al., 
2002), and age (Chaparro et al., 2005; Merat 
et al., 2005). All the studies mentioned above 
confirmed the detrimental effect of different 
types of distraction on driving performance 
such as lane changing (Blanco et al., 2006; 
Lansdown et al., 2002), (Burns et al., 2005); 
reduced anticipation of the need to brake 

and shortened time to collision (Jamson et 
al., 2004); and lowered the performance of 
car-following (Blanco et al., 2006; Lansdown 
et al., 2004; Ranney et al., 2005). 

Driving behavior with and without each 
distraction should be compared to detect 
the pure effect of driver distraction. Visual 
and cognitive distractions represent the 
two main types of distraction (Liang & Lee, 
2010). A visual distraction that involves the 
driver’s eyes off the road can be determined 
by temporary changes in drivers’ eye glances. 
Detecting cognitive distraction, in which 
the mind is off the road, is more complicated 
than detecting visual distraction because the 
symptom of mental distraction is generally 
not apparent and can differ among drivers. 
Quantifying the complicated relationship 
between drivers’ cognitive states and 
distraction indicators is a big challenge. 

M ac h i ne lea r n i ng a nd d at a m i n i ng 
approaches that can extract unknown 
patterns f rom a large volume of data 
demonstrate an advanced and promising 
method for coping with such a challenge. 
This skill can mainly be applied to build 
a discrimination model based on driving 
behavior without distraction. A Support 
Vector Machine (SVM), which was proposed 
in (Vapnik, 2013), is based on the statistical 
learning method and can be used for pattern 
classification and implication of nonlinear 
associations among variables (Cristianini 
& Shawe-Taylor, 2000; Vapnik, 2013). This 
technique has been applied effectively 
to the recognition and confirmation of 
faces, objects, handwritten characters and 
digits, text, speech, and speakers, and the 
recovery of data and images (Byun & Lee, 
2002; Dehzangi, Paliwal, Lyons et al., 2013; 
Dehzangi, Paliwal, Sharma et al., 2013). The 
learning procedure and the strength of the 
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SVM for pattern recognition make it an 
excellent candidate for our problem. SVMs 
can create linear and nonlinear models and 
compute the nonlinear models as accurately 
as the linear ones. The primary advantage 
of an SVM is its ability to minimize both 
structural and empirical risk (Khandoker 
et al . , 2009), thereby leading to better 
generalizations for new data classifications, 
even with limited training datasets. The 
SVM can also perform well with noisy data 
(Byun & Lee, 2002) and does not require 
prior knowledge before training. Most of 
the proposed distraction detection systems 
are based on supervised learning. Human 
experts supervise the training by making 
labels, which are the true distraction states 
consistent with training data. To yield more 
strong models than traditional learning 
methods (e.g., logistic regression), which 
merely minimize training error, the SVM 
method avoids overfitting by reducing the 
upper bound of the simplification error and 
by finding the maximal marginal hyperplane 
(Amari & Wu, 1999). The SVM method is 
a robust technique for detecting changes in 
human behavior and represents a particularly 
promising approach to detecting cognitive 
distraction given the complex dynamics of 
eye movement. The SVM is among the most 
powerful techniques for pattern recognition. 

This paper’s main objective is to detect and 
classify driver distraction based on different 
road types by applying machine learning 
algorithms (comparing different methods) 
and using driving simulator data as inputs to 
the model. Our previous paper (Ahangari et 
al., 2020) investigated the driving behavior 
of different distraction types. Here, we 
mainly address driver distraction on driving 
behavior (change lane, speed, crash, brake, 
and throttle) that is considered an essential 
aspect in the investigated maneuvers. 

Different road classes have different speed 
limits, numbers of lanes, cognitive loads, 
and traffic loads. Therefore, drivers may act 
differently on each road type when distracted 
and may have a higher risk of crashes and 
near-crashes on some roads than others. 
To tackle this problem, we used the SVM 
to our data collected in a simulator study 
and achieved 94.24% prediction accuracy 
for detecting cognitive distraction. This 
result was obtained on the normalized data, 
which was tested using ANOVA to validate 
its statistical significance.

This paper is organized as follows. First, 
it defines driver distraction based on the 
current discussion in the literature. Then, 
the investigated machine learning techniques 
for modeling driver distraction are brief ly 
described. The experimental setup and the 
main results are shown next. Finally, the 
last section summarizes the main points 
of interest.

2. Methods

Two surveys and a driv ing simulation 
experiment were conducted to investigate 
distracted drivers’ performance associated 
with dif ferent types of distraction on 
four different road types (rural collector, 
freeway, urban arterial, and local road in 
a school zone). The driving simulation 
experiment examined an indiv idual ’s 
driving performance with different forms 
of distraction (hands-free calling, hand-held 
calling, voice command, texting, clothing, 
and eating/drinking) on different road 
types. The designed experiment allowed 
a complete analysis of each participant’s 
driving performance (speed, acceleration, 
brake, throttle, and crash), given various 
kinds of roads as well as different forms of 
distraction. 
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Two surveys were designed for this study. 
The pre-survey, which participants filled 
out before their driving experience, included 
sociodemographic information and questions 
about distracted driving habits (if they use 
a cellphone when driving, have a crash 
when using GPS). The post-survey that 
participants filled out after their driving 
simulator experience included the probability 
of using a cellphone or other distracting 
tasks when driving after being involved in 
this study. A total of 92 participants, 40 
females and 52 males, participated in the 
survey. Around 60 percent of participants 
were under 26 years old. The participants’ 
demographic information is shown in our 
previous study (Ahangari et al., 2020).

We desig ned t he d r iv ing si mu lat ion 
ex per i ment to a na ly ze t he ef fec t of 
distraction on four different road types 
(rural collector, freeway, urban arterial, and 
local road in a school zone). Participants 
(ages 18 to 40) took part in the experiment. 
The participants were recruited from 
Morgan State University and the Baltimore 
metropolitan area using f lyers and online 
invitations. Some 71.7% of the participants 
had their drivers’ licenses for at least three 
years, and most of the participants drive at 
least 8,000 miles annually. Some 7.6 percent 
of the participants had crashed while driving 
distracted. All driving experiments were 
conducted in the Safety and Behavioral 
Analysis (SABA) Center at Morgan State 
University.

We used a high-fidelity driving simulator in 
the experiment. The simulator’s software 
(Virtual Reality Design Studio) provides a 
real-world driving atmosphere customized 
for var ious appl icat ions. It simulates 
buildings, roads, pavement markings, traffic 
signals, road signs, weather conditions, and 

traffic. The driving simulator, produced by 
the Forum8 Company, is a fixed driving 
simulator that consists of a regular vehicle 
and three 40-inch monitors (FORUM8, 
2020). Part icipants interact w ith the 
simulator using a sedan’s steering wheel 
and pedals that provide real-time feedback. 
Due to the consideration of different types 
of distraction and four dif ferent road 
conditions, six scenarios were designed for 
this study. All six scenarios used mild traffic 
conditions to investigate only the effect of 
distraction on driving behavior. 

The participants engaged in six scenarios, 
including hands-free calling, hand-held 
calling, voice command, texting, clothing, 
and eating/drinking. In each scenario, the 
participants drove from Hampton Lane 
(rural road) to I-695 (freeway) to Perring 
Parkway (urban arterial) to Radar Road 
(local, school zone), which takes about 15 
minutes. The participants were compensated 
at $15 per hour for their participation in the 
study. They were penalized for disobeying 
traf f ic rules such as dr iv ing over the 
speed limit or running a red light. The six 
scenarios are the same, except for the type 
of distraction. Participants received one of 
the six distracting tasks – hands-free calling, 
hand-held calling, voice command, texting, 
clothing, and eating/drinking – at the same 
location in each scenario. The participants 
used their smartphones to eliminate any 
discrepancies caused by using an unfamiliar 
smartphone. 

It is worth noting that at the beginning of 
each scenario, participants were informed 
about the type of distraction they would 
receive. Two observers monitored the 
participants’ driving performance. The 
simulator software recorded all related data, 
including speed, acceleration, throttle, lane 
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changing, brake, collision, steering wheel 
changing, duration time, and vehicle location 
every second.

To forecast the distraction based on the 
driver’s behavior on different road types 
(rural collector, freeway, urban arterial, and 
local road in a school zone), we normalized 
the data to have a fair comparison (explained 
in detail in the next section). We then 
classified them into four different categories 
based on the road type. There were 1,952 
simulation runs by the 92 participants.

2.1. Support Vector Machine (SVM)

A wide range of classification techniques has 
been used for object detection, such as SVM 
(Oren et al., 1997), AdaBoost (Rätsch et al., 
2001), and neural network (Zhao & Thorpe, 
2000). Some researchers also constructed a 
classifier of simple cascade features for object 
detection (Schneiderman, 2004; Viola & 
Jones, 2001). Among those classifiers, the 
SVM is considered one of the best machine 
learning and pattern classification algorithms 
and obtained promising results (Dehzangi 
et al ., 2015; Jahangiri & Rakha, 2015). 
The SVM finds the maximum marginal 
hyperplane to minimize classification error. 
The SVM uses a kernel function to map 
training data from the original input space to 
a high-dimensional feature space (Cristianini 
& Shawe-Taylor, 2000). When the data are 
linearly separable in the feature space, the 
hyperplane that maximizes the margin 
between classes yields the minimized upper 
bound of generalization error. However, 

when the data are not linearly separable, a 
positive penalty parameter is introduced to 
permit training error by specifying the cost 
of misclassifying training instances and find 
the soft margin. The classification of some 
known point in input space xi is yi which is 
defined to be either -1 or +1. If x' is a point 
in input space with unknown classification, 
then (eq.1.):

	 (1)

where y' is the predicted class of point x'. 

The function K ()is the kernel; n is the 
number of support vectors; αi are adjustable 
weights, and b is a bias. The SVM training 
process minimizes both training error and 
the upper bounds of generalization error. 

This method is computationally effective 
and reduces genera l izat ion errors to 
avoid over-fitting (Dehzangi et al., 2015; 
Jahangir i & R ak ha, 2015). The SV M 
yields more robust models in comparison 
with the linear-regression algorithms that 
minimize the mean square error, which can 
be seriously affected by outliers in training 
data (Dehzangi, Paliwal, Sharma et al., 2013). 

3. Results and Discussion

3.1. Statistical Preprocessing using 
ANOVA

We used an ANOVA and Post Hoc Tukey 
to find differences in distracted driving 
behavior on different road types. Speed, 
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throttle (ratio on the acceleration pedal 
from 0 to +1 in which 0 means no throttle 
and +1 is full throttle), brake (ratio on the 
brake pedal from 0 to +1 in which 0 means 
no braking force and +1 is maximum brake 
force), steering velocity (rotation rate of the 
steering wheel per second), offset from road 
center (offset of the vehicle’s position from 
the center of the road in meters; a negative 
number shows the offset toward left and a 
positive number indicates the offset toward 
the right), lane change, collision, and brake 
light (frequency of brake lights turning on) 
are dependent variables. Road type (rural, 
freeway, urban, and local) is the independent 
variable.

All variables are only for the distraction 
period; all but lane changing and brake light 
(total number during distraction) are the 
averages over the distracting period for all 
types of distraction for each road.

Since different road types have different 
speed limits and numbers of lanes, to have 
a fair comparison of driving behavior under 
distraction on different roads, we first 
normalized data and then performed an 
ANOVA analysis. The speed limit on the 
rural road is 30 mph, the freeway is 55, the 
urban arterial is 45, and the local road is 30; 
also, the number of lanes in each direction 
on the rural road is one, the freeway has 
three, the urban arterial has two, and the 
local road has one. We subtract the vehicle 
speed from the speed limit to normalize 
speed and divide it by the speed limit. For 

normalizing the lane change, we calculated 
the number of lanes changing per lane. The 
ANOVA (Table 1) shows that distracted 
driving behavior is significantly different 
under different road types for all variables 
except collision.

As shown in Table 1, speed on the rural road 
had the highest ratio to its speed limit under 
distraction, which could be due to the lower 
cognitive load of this road type compared to 
other roads: only one lane in each direction, 
low traffic, very few intersections and stop 
signs. Conversely, local roads in a school zone 
had the lowest ratio to its speed limit under 
distraction due to higher cognitive load: 
the presence of pedestrians and frequent 
stop signs. Drivers generally reduce their 
speed when distracted (Horrey & Wickens, 
2006); however, our results show that they 
reduce their speed on local roads in a school 
zone the most, followed by the urban arterial 
the freeway. On rural roads, their speed is 
over the speed limit when distracted. This 
ranking can be explained by cognitive load. 
As expected, the number of lane changes 
is the highest in urban arterials. Also, as 
expected, steering velocity and offset from 
the lane center are the highest on the freeway, 
then the urban road, then rural and, lastly, 
local road due to their speed limits. Throttle 
and brake rankings are freeways, rural, 
urban, and local due to speed and cognitive 
load. An average number of brake lights 
rankings are urban arterial, rural, local, and 
freeway, probably due to a combination of 
interruptions/cognitive load and speed limit. 

107

International Journal for Traffic and Transport Engineering, 2021, 11(1): 102 - 114



Table 1 
Descriptive and ANOVA Analysis

Variables N Mean
Std. 

Deviation
F Sig.

Normalized Speed

Rural Road 402 0.263 0.314

865.849 0.000
Freeway 800 -0.128 0.088

Urban Arterial 399 -0.336 0.126
Local 351 -0.321 0.219

Throttle

Rural Road 402 0.230 0.111

287.391 0.000
Freeway 800 0.243 0.094

Urban Arterial 399 0.114 0.062
Local 351 0.111 0.094

Brake

Rural Road 402 0.041 0.048

370.743 0.000
Freeway 800 0.007 0.007

Urban Arterial 399 0.068 0.055
Local 351 0.149 0.138

Steering Velocity

Rural Road 402 0.012 0.009

187.104 0.000
Freeway 800 0.031 0.021

Urban Arterial 399 0.016 0.010
Local 351 0.013 0.015

Offset from Road 
Center

Rural Road 402 1.077 0.640

223.594 0.000
Freeway 800 3.679 2.887

Urban Arterial 399 2.418 2.124
Local 351 0.726 0.441

Normalized Lane 
Change

Rural Road 402 0.000 0.000

380.228 0.000
Freeway 800 0.507 0.549

Urban Arterial 399 0.816 0.492
Local 351 0.000 0.000

Collision

Rural Road 402 0.000 0.000

1.811 0.143
Freeway 800 0.010 0.111

Urban Arterial 399 0.005 0.100
Local 351 0.000 0.000

Brake Light

Rural Road 402 1.264 2.414

87.713 0.000
Freeway 800 0.369 1.150

Urban Arterial 399 3.291 5.395
Local 351 1.222 2.319

Tukey Post Hoc analysis, as shown in 
Table 2, reveals a statistically significant 
difference in the mean of speed, throttle, 

brake, steering velocity, offset from road 
center, lane change, and brake light among 
different road types.
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Table 2 
Tukey’s Post Hoc Analysis of Distracted Driving Behavior

Variables
Mean Difference

(I-J)
Std. Error Sig.

Normalized Speed Rural Road
Freeway 0.3909 * 0.01149 0.000

Urban Arterial 0.59923 * 0.01328 0.000
Local 0.58342 * 0.01373 0.000

Throttle Rural Road
Freeway -0.01374 0.00567 0.073

Urban Arterial .11520* 0.00655 0.000
Local .11909* 0.00677 0.000

Brake Rural Road
Freeway .03421* 0.00412 0.000

Urban Arterial -.02647* 0.00476 0.000
Local -.10763* 0.00493 0.000

Steering Velocity Rural Road
Freeway -.01881* 0.00098 0.000

Urban Arterial -.00354* 0.00113 0.010
Local -0.00088 0.00117 0.876

Offset from Road 
Center Rural Road

Freeway -2.60195* 0.12912 0.000
Urban Arterial -1.34103* 0.14925 0.000

Local 0.35134 0.15429 0.104

Normalized Lane 
Change Rural Road

Freeway -0.50708* 0.02543 0.000
Urban Arterial -0.81578* 0.02940 0.000

Local 0.00000 0.03039 1.000

Collision Rural Road
Freeway -0.01000 0.00517 0.213

Urban Arterial -0.00501 0.00597 0.836
Local 0.00000 0.00617 1.000

Brake Light Rural Road
Freeway .89493* 0.17986 0.000

Urban Arterial -2.02705* 0.20791 0.000
Local 0.04146 0.21492 0.997

Note: *. The mean difference is significant at the 0.05 level.

3.2. Classification Results

To evaluate our model, we randomly split our 
data for each subject set (1,952 experiments) 
into training (80% of the samples) and 
independent test sets (20% of the samples). 
As a result, we have 1,587 samples in our 
training data set and 365 samples in our 
testing data set. We then report our result for 
10-fold cross-validation on the training data 
and the results on the independent test set. In 
10-fold cross-validation, the data is randomly 
divided into ten equal subgroups. In each 
iteration, nine subgroups are combined as 

training data, and the remaining subset is 
used as the testing data. This process is 
repeated ten times, equal to the number of 
subgroups. Data were sampled at random 
from the training set, as all data used in this 
study were labeled adequately as distracted 
under four different road conditions. For a 
fair comparison, the random data partition 
was conduc ted once a nd saved, a nd 
different algorithms were run over the same 
classification. Note that the independent 
test set has never been used for parameter 
tuning to investigate our achieved results’ 
generality.
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We classi f y four dif ferent distraction 
definitions based on the road types (rural 
collector, freeway, urban arterial, and local 
road in a school zone) using SVMs. To 
provide more insight into the performance 
of the SVM, we report Sensitivity, Precision, 
Matthew Correlation Coefficient (MCC), 
Area Under the Curve (AUC), and total 
Accuracy (ACC). Our achieved results using 
10-fold cross-validation and an independent 
test set are shown in Table 4.

As shown in Table 3, the SVM can predict 
the road’s distraction with 94.24% accuracy 
for the independent test set and 93.90% 
for 10-fold cross-validation. The similar 
results achieved for these two evaluation 
methods demonstrate the generality of 
our achieved results. As shown in Table 
3, we can predict the distraction for the 
freeway, urban arterial, and local road in a 
school zone with over 90% specificity. This 

demonstrates the effectiveness of the SVM to 
predict distraction in such roads. The mean 
sensitivity for all SVM models is 92.75%. The 
high Sensitivity and Precision demonstrate 
the SVM’s ability to predict positive samples. 
In other words, they demonstrate that the 
SVM can identify different distraction 
patterns with respect to varying roads with 
more than 90% accuracy.  

This study uses machine learning to predict 
different distraction patterns for various 
dr iv ing env ironments. Using proper 
preprocessing to normalize our data and 
validating that using ANOVA enables us 
to make our data consistent for further 
analysis. After that, using the SVM as our 
classification technique, we can achieve 
94.24% accuracy for this task, which is a 
promising result. Such a study and produced 
data can be used as a benchmark for future 
studies in this field. 

Table 3
Results Achieved Using SVM for 10-fold Cross-validation and Independent Test Set

Results of 10-fold cross-validation
Sensitivity Precision MCC AUC ACC

Rural Collector 92.30% 92.30% 90.30% 97.20% ---
Freeway 97.80% 93.30% 92.30% 96.60% ---

Urban arterial 94.00% 98.20% 95.10% 98.40% ---
Local road in a School Zone 86.90% 92.40% 87.40% 96.50% ---

Total 93.90%
Results of Independent Test

Sensitivity Precision MCC AUC ACC
Rural Collector 93.40% 98.60% 95.00% 98.40% ---

Freeway 99.30% 89.80% 90.30% 95.90% ---
Urban arterial 92.00% 98.60% 94.10% 98.30% ---

Local road in a School Zone 85.90% 96.50% 89.30% 94.40% ---
Total 94.24%

4. Conclusions

In this paper, we recruited 92 participants 
to drive on a simulated network in the 
Baltimore area (Maryland, USA) – including 

a rural road, a freeway, an urban arterial, 
and a local road in a school zone – under 
six different driving distractions in a high-
fidelity driving simulator. Their driving 
performances were recorded and analyzed. 
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The ANOVA and Tukey Post Hoc results 
indicated that participants demonstrate 
different driving behavior under distraction 
on different road types. However, the number 
of crashes is not significantly different on 
various roads. The Support Vector Machine 
(SVM) method recognized and predicted 
the pattern with 94.24% accuracy for the 
independent test set and 93.9% for 10-fold 
cross-validation. 

The results showed that the participants 
drove over the speed limit when distracted 
on rural roads. This is most probably due 
to very low traffic f low and low cognitive 
load, which could increase the probability of 
crashes in an interruption such as an animal 
passing. Conversely, driving on freeways at 
13% under the speed limit (to focus on the 
distracting event such as texting) could cause 
crashes with cars moving at speeds higher 
than the speed limit, especially in the left 
lanes. Driving on the freeway had the least 
force of brake pedal while driving on the local 
road had the most, and that can be related 
to a load of scenery and intersections. On 
all four different roads, there was an offset 
from the road center toward the right; the 
freeway had the most offset, and the local 
road had the least. 

This study is the first of its kind to the best 
of our knowledge using machine learning 
to predict different distraction patterns for 
the various roads and driving environments. 
Our previous study (Ahangari et al., 2020) 
reported the effect of different types of 
distractions, and this study presented the 
distracted model under dif ferent road 
classes. A limitation of this study is that it 
investigated various distractions combined 
with driving behavior on different roads. An 
extension of this study would be collecting 
more data and classifying them by road and 

distraction type. Furthermore, comparing 
driving behavior when distracted and not 
distracted on each road type would help 
model distracted behavior. The extended 
prediction model could be used by law 
enforcement agencies and auto insurance 
companies to recognize driver distraction 
type using recorded vehicle performance 
measures such as speed, steering velocity, 
brake, etc., on different roads. 
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