
ADAPTING JSPRIT FOR THE ELECTRIC VEHICLE ROUTING
PROBLEM WITH RECHARGING: IMPLEMENTATION AND
BENCHMARK

Ayman Mahmoud1, Tarek Chouaki2, Sebastian Hörl3, Jakob Puchinger4

1,2,4 Université Paris-Saclay, CentraleSupélec, Laboratoire Génie Industriel, 91190, Gif-sur-Yvette, France
2,3,4 Institut de Recherche Technologique SystemX, Palaiseau 91120, France

Received 16 July 2022; accepted 18 August 2022

Abstract: This article presents our adaptation of the Ruin-and-Recreate (R&R) algorithm to
solve the electric vehicle routing problem with time windows and multiple trips. We implement
this adaptation in JSprit, an open-source vehicle routing problem solver. We showcase the
framework for a case study in Lyon, France. In the case study, we assess the efficiency impact
of adding charging constraints to a simulation of a fleet of autonomous delivery robots. The
framework is tested on benchmark instances and compared with results from literature.

Keywords: electric, vehicle, routing, JSprit, optimization.

1 Corresponding author: ayman.mahmoud@centralesupelec.fr

UDC: 656.135:519.816]:004
629.326.2(44)

DOI: http://dx.doi.org/10.7708/ijtte2022.12(3).04

1. Introduction

W it h t he e volut ion of t e c h nolog y,
policymakers are working towards making
urban areas less polluted and carbon-free.
One of the main factors affecting the quality
of air and CO2 emissions is freight f lows.
There is great interest in transforming the
existing logistics fleet by integrating battery
electrified vehicles (BEV). Especially, a
significant potential is seen for last-mile
logistics, where distances are short, and
the f lows of goods may be consolidated
(Mucowska, 2021; Patella et al., 2021)

Clearly, with electrification come operational
challenges related to vehicle range and the
necessity to recharge. Hence, a range of
research endeavors is focused on solving
problems associated with the specif ic
characteristics of BEVs, such as the problem
of locating recharging stations (Vosooghi

et al., 2020) or the electric vehicle routing
problem (Erdoğan and Miller-Hooks, 2012;
Schneider et al., 2014).

For the latter class of problems, the present
paper introduces distance constraints
and recharging activ ities to JSprit, an
open-source solver for common vehicle
routing problems. The article is organized
as fol lows; Sect ion (2) presents the
theoretical background and a literature
review on existing use cases of JSprit, while
Section (3) covers the implementational
aspects of extending the framework. Our
adaptations are exemplif ied in a case
study for Lyon, France, in Section (4);
benchmarking results are displayed in
section (5), comparing the performance
of the algorithm used in JSprit with results
from (Schneider et al., 2014). We conclude
and discuss future work on the proposed
approach in Section (6).

340

International Journal for Traffic and Transport Engineering, 2022, 12(3): 340 - 351

2. Background

Generally, Vehicle Routing Problems (VRP)
aim to arrange a given set of transport jobs
such as delivery pickups and drop-offs
or depot visits into routes for a given (or
variable) vehicle f leet. Algorithms solving
VRPs decide which job to assign to which
vehicle and how to temporally order the
jobs along a vehicle’s route. Furthermore,
specif ic problem formulations can be
derived by introducing constraints such
as requiring that for a specific delivery, a
pickup job comes before a drop-off job,
that every vehicle can only cover a limited
distance before returning to a depot, that
certain jobs need to be performed within
predefined time windows, and many more.
The objective is often to minimize the total
distance travelled, but more complex cost
formulations exist considering the number
of vehicles used or the time spent. (Vigo and
Toth, 2014) provide an overview of VRP
variants and their mathematical formulation.

2.1. Ruin & Recreate Heuristics

The Ruin & Recreate principle was first
presented in (Schrimpf et a l ., 2000).
The Ruin & Recreate heuristic is a large
neighborhood search that combines elements
of simulated annealing and threshold-
accepting algorithms. Highlighting its
performance for complex optimization
problems with discontinuous search spaces
and problems with many constraints, the
researchers have tested their meta-heuristic
on a wide range of VRP formulations.

The Ruin & Recreate heuristic follows three
steps: First, an initial, feasible solution is
constructed. Such a feasible solution is
an ensemble of routes (sequences of jobs)
depending on the VRP formulation for

each vehicle that fulfils a predefined set of
constraints. After that, multiple iterations
of executing the Ruin & Recreate steps are
performed. The Ruin step selects a set of jobs
to ruin based on various existing strategies
(Christiaens and Berghe, 2020; Schrimpf
et al., 2000). These jobs are then removed
from the existing job sequences. Following
the Ruin step, the Recreate step finds a new
configuration by re-inserting some or all of
the removed jobs into the schedules, and a
feasible solution is obtained. The Ruin &
Recreate heuristic yields a feasible solution
to the problem after every iteration, but the
quality may vary. For that purpose, a cost
function is defined, which can be based,
for instance, on the total distance or time
driven by the vehicles. The cost of a route
is calculated given the sequence of jobs and,
usually, based on cost matrices indicating
the cost of moving between their respective
locations. Finally, based on threshold
acceptance, the algorithm decides whether
to keep the previous solution or to continue
with the new one, temporarily allowing
a worsened objective to find even better
solutions in future steps.

2.2. The JSprit Framework

JSprit is an open-source toolkit written in
Java that implements the Ruin & Recreate
principle in a modular and extensible way
(JSprit, 2022). It solves a wide range of
VRP variants, including Capacitated VRP
(CVRP), Multiple Depot VRP, VRP with
Time Windows (VR P-TW), VR P with
backhauls, VRP with Pickup and Delivery
(VRP-PD), VRP with heterogeneous f leet,
the Traveling Salesman Problem (TSP), and
the Dial-a-Ride Problem (DARP).

The open-source solver has been used in a
range of research activities. For instance,

341

Mahmoud A. et al. Adapting JSprit for the Electric Vehicle Routing Problem with Recharging: Implementation and Benchmark

(Villanueva, 2020) address real-life waste
collection problems as part of the ODL (Open
Door Logistics) framework, and. (Karkula
et al., 2019) presents a comparative study
on open-source tools for solving capacitated
vehicle routing problems with time windows.

JSprit can be integrated directly with
the agent- and activity-based transport
simulation framework MATSim (Martins-
Turner et al., 2019) with applications on
various topics. (Martins-Turner et al., 2020)
use JSprit to generate tour plans for a case
study of Berlin’s urban last-mile supply of
grocery stores. For the same urban context,
(Schlenther et al., 2020) use the tool in a
study on multi-use autonomous taxis to
transport passengers and goods. (Bean and
Joubert, 2019) present a study on receiver
agents with autonomous decision-making
in MATSim. Their generated logistics flows
are optimized using JSprit.

JSpr it has not yet been used to solve
electric VRP instances with recharging.
However, (Ewert et al., 2021) use the tool
to solve parcel delivery problems with range
constraints. They introduce a vehicle type-
specific distance constraint and demonstrate
their model on real data in retail food
distribution. Electric energy consumption
is based on travel distance and vehicle type.
Contrary to the present work, no recharging
stations are considered.

2.3. Contribution

The contribution of the present paper is
the introduction of (1) a f lexibly adjustable
energy consumption model into JSprit,
(2) range constraints, and (3) explicit
charging activities at distinct locations
(charging stations) to the implementation
of Ruin & Recreate in JSprit. Furthermore,

experimental results on a custom case study
and comparison with benchmarks from the
literature are presented.

3. Implementation

The implementation of the Ruin & Recreate
heuristic in JSprit has been adjusted to
consider energy consumption and recharging
at distinct charging stations with specifiable
consumption and charging patterns. For that
purpose, three major components have been
added to the framework: (1) functionality
to calculate the state of charge (SoC) of a
vehicle at any point along a route, (2) a new
insertion strategy that considers charging
stations, and (3) a Ruin strategy that is aware
of charging constraints. These components
are described in the following.

3.1. Calculating the State of Charge

Generally, the cost of a route in JSprit is
derived from following the movements and
jobs along a route and summing up costs.
Such costs can come from a predefined
matrix of routed distances, but they can also
be context-aware, e.g., taking into account
the current time of day or a vehicle’s load at
any point along the route. The latter can be
expressed as a state variable in JSprit, which
can be updated along a route.

To consider the battery power consumption,
we introduce a new state variable to each
vehicle, representing the remaining energy
left in each vehicle’s battery. Traversing
each vehicle’s route, we decrease the energy
level following the formulation of energy
consumption presented in (Schneider et al.,
2014), incorporating speed, gradients, and load.

Whenever a vehicle visits a charging station,
battery power will be recharged. Spending

342

International Journal for Traffic and Transport Engineering, 2022, 12(3): 340 - 351

time at a depot that contains a charging
station is different from visiting the charging
station. The charging duration is calculated
based on a predefined recharging rate r per
vehicle type. Figure 1 shows a visualization
of the SoC along a vehicle route with multiple
stops at charging stations.

3.2. Inserting Charging Stations

JSprit already comes with strategies for
inserting new jobs into existing vehicle
routes. These insertion strategies are used
to obtain an initial solution, where JSprit
iteratively inserts all existing jobs into a
set of initially empty vehicle routes. Later,
during the Recreate phase, these strategies
are used to re-insert jobs selected during
the Ruin phase.

The insertion heuristics consider a set of
constraints that need to be fulfilled. A
range constraint has been added to work
with electric vehicles, ensuring that no
insertion is accepted that leads to a route
with negative SoC at any point along the
route. This constraint is checked during all
job insertions to create the initial solution
for the Recreate step.

T he i n ser t ion s t rateg ies have been
modified to facilitate the use of charging
stations. Whenever a job is inserted, it is
first tested whether the range constraint
would be violated. If this is the case, the
modified insertion strategy tries to insert
a combination of a charging job and the
planned job. The algorithm finds the closest
charging stations based on the location of the
preceding job. Then, it evaluates the global
insertion cost after inserting the job and a
charging activity using any of the closest
stations at any point along the route. If any
of the temporary configurations leads to a

feasible solution that satisfies the acceptance
threshold, the solution is accepted, and both
the charging and the stop jobs are inserted.
Otherwise, the proposed insertion is tagged
infeasible, and the new job will need to be
added at a different location proposed by
the standard procedure.

To guide the insertion process, the set of
relevant charging stations to choose from
needs to be defined for every insertion.
In each case they are sorted by the sum of
distances to all the jobs in the route. By
default, for instances with more than ten
charging stations, we choose the 50% of the
closest stations. This is done in order to avoid
having to evaluate all the insertions for all
charging stations and save computation time.
However, we keep a minimum number of
five evaluated charging stations in case
sufficiently many are available.

3.3. Ruining Existing Solutions

By default, JSprit would use the existing
Ruin strategies to remove activities along
the route, including those for recharging.
However, this may lead to infeasible
solutions that cannot be repaired by the
simple insertion process described above.

The existing Ruin strategies have been
modified to counteract the emergence of
infeasible solutions. Whenever a recharging
activity is deleted from a route, it is first
checked whether this would violate the
vehicle’s range constraint. If this is the case,
the charging activity is left inside the route.

4. Case Study

We test the new functionality added to the
JSprit framework on a case study for parcel
deliveries in Lyon. The experiments are

343

Mahmoud A. et al. Adapting JSprit for the Electric Vehicle Routing Problem with Recharging: Implementation and Benchmark

inspired by existing studies that propose
using delivery robots for sustainable last-mile
logistics (Bakach et al., 2021; Yu et al., 2020).

A synthetic population for Lyon is created
based on the open-source and open data
methodology developed in (Hörl and Balac,
2021). Such a synthetic population is an
individual-based artificial representation
of the real population of the city, including
soc iodemog raph ic at t r ibutes on t he
personal and household-level. Based on this
sociodemographic and statistical information

on the average number of parcel deliveries
of household strata as reported by (Gardrat,
2019), a discrete number of parcels for an
average day is generated for every household
(Horl and Puchinger, 2022). For the case
study, households with addresses in the
Conf luence peninsula South of the old
town of Lyon, France, are chosen, leading
to about 128 parcels to be delivered (Figure
1). Multiple delivery windows are defined
for each parcel, based on the presence of
household members at any time during the
day.

Fig. 1.
Temporal and Spatial Perspective
Example for, a temporal and spatial analysis of the SoC and the routes generated by the algorithm for
the time between 06:00 at 13:00

In the test case, the parcels are delivered by
automated electric delivery robots from an
Urban Consolidation Center (UCC) located
at the Eastern shore of the study area. Each
vehicle can carry a maximum of four parcels
at a time and perform multiple tours during
the day. The objective is to minimize the
total distance driven by the entire f leet for
one day. Distances are calculated based on
the shortest path through the road network,
and travel times are derived using a speed

of 3 km/h. For each vehicle of the variable
size f leet, a battery capacity of 8000mAh
LiPo 18.5V is assumed with consumption of
24.67 Wh/km based on data obtained from
the Starship delivery robot (Starship, 2022).
The initial SoC is set to 100%.

To summarize, we present an electric Multi-
Trip Vehicle Routing Problem with Time
Windows (e-MTVRPTW), demonstrating
the interaction of existing functionality in

344

International Journal for Traffic and Transport Engineering, 2022, 12(3): 340 - 351

JSprit with our electric vehicle functionality
including recharging at the depot.

T he pick up a nd del iver y problem is
optimized using JSprit, with and without
charging constraints. In each case, 1,000
iterations are performed. Furthermore,
to test the sensitivity of the solutions, the
experiments are repeated with 1.3, 1.6 and
two times the baseline demand.

As an example of the detailed information
derived from the JSprit runs, Figure 1a shows
the SoC at and in between depots, delivery,
and recharging activities for one vehicle
route. Figure 1 shows the spatial trace of a
vehicle. Aggregated metrics can be derived
for each scenario using this information.

Table 1 shows the optimization results
regarding problem size, the number of

vehicles needed, the distance driven, and
the number of charging activities. The last
column indicates whether the problem has
been solved with or without charging and
range constraints. The results show that
for the case without electric consumption
constraints, four vehicles are needed
for three demand levels; only for the
highest demand scenario, five vehicles
are necessary to deliver all parcels within
the constraints given by the delivery time
windows. In the eVRP case, the number of
vehicles needed doubles in the solutions
found by JSprit and even increases to 13
vehicles for the highest demand scenario.
The results show that about every second
vehicle must perform a charging activity
in these scenar ios. The results stay
very similar in terms of distance, as the
charging station is located directly at the
depot.

Table 1
Optimization Results with Sensitivity Against Increased Demand

Scaling factor 1.0 1.3 1.6 2.0 eVRP
Parcels 128 165 198 256

Vehicles
4 4 4 5
7 8 9 13 🗸

Distance
55.19 63.26 71.74 95.23
59.29 62.21 71.89 90.49 🗸

Charging activities 4 4 5 4 🗸

5. Benchmarking Results

JSprit uses the Ruin & Recreate algorithm
that has shown promising results in solving
VRP variants (Schrimpf et al., 2000). To
assess the performance of our extension for
electric vehicles, we can consider existing
research common eVRP problems (Erdoğan
and Miller-Hooks, 2012; Goeke, 2019;
Montoya et al., 2015; Schneider et al., 2014).

The research of (Erdoğan and Miller-Hooks,
2012) introduced the Green Vehicle Routing
Problem (G-VRP), in which they consider a
vehicle routing problem involving alternative
fuel vehicles (AFVs) that have limited travel
range and require recharge during routing.
The results showed that the limitation of the
driving range severely increased the total
travelled distance, which takes into account
the detours to the charging stations.

345

Mahmoud A. et al. Adapting JSprit for the Electric Vehicle Routing Problem with Recharging: Implementation and Benchmark

The work of (Erdoğan and Miller-Hooks,
2012) invited many researchers to work on
the same instances and propose different
heuristics with better performance and
exact approaches. Most notably, (Schneider
et al., 2014) proposed a hybrid Variable
Neighborhood Search/Tabu Search (VNS/
TS) algorithm, which we use as a benchmark
for our JSprit extension. Their approach
includes four main steps. Step (1) begins
the “Preprocessing Phase,” in which the
algorithm removes infeasible jobs. During
the “Shaking Phase” (2), the VNS component
finds a neighbouring solution to the problem.
In the “Perturbation Phase” (3), the VNS
component randomly cross-exchanges
customer sequences between different
routes. The final “Intensification Phase” (4)
uses the TS to improve randomly generated
solutions. The authors use the Simulated
Annealing heuristic (SA) as their acceptance
criterion, where deteriorating solutions are
accepted with a certain probability.

The benchmark consists of four sets with
ten instances each featuring 20 customers
(“Small Instances”). The sets have different
characteristics regarding the distribution of
the clients (C: clustered, U: random) and
the number of available fueling (charging)
stations (S). In addition to the four sets, there
are instances with 111 to 500 customers
(“Large Instances”).

The objective is to find the shortest distance
with a limited number of vehicles while
assuring all feasible customers are visited
once, the tour length cannot exceed 11

hours, and the charging duration is fixed at
30 minutes. This section analyzes the first
promising benchmark results.

Tables 2.1, 2.2, and 2.3 present the results
of JSprit solving all small instances. We used
JSprit to solve the small instances by setting
the number of iterations to 2,000. The best
solution found and the average running time
of 10 executions are shown and compared
with the results of the VNS/TS heuristic. In
the tables, #m refers to the number of tours, #c
refers to the number of served customers, and
%f compares the objective values found by
JSprit with VNS/TS. Only solutions which
have a matching number of customers are
valid to be compared (see Discussion).

For the small instances, JSprit found 30
matching solutions out of 40 instances,
two better solutions than VNS/TS, and 8
solutions with worse objective values. For
the instances (S2_4i4s, S2_4i6s, S2_4i10s)
JSprit results are not matching the results
found in Schneider, Stenger & Goeke 2014,
but the (%f) is smaller than 0,01.

The large instances have been solved using
JSprit by setting the number of iterations to
1,000 for the instances with 111 customers
(Table 3), and to 500 for those between
200 and 500 customers (Table 4). For
the instances with 111 customers, JSprit
consistently requires on more tour than
VNS/TS with the same number of unserved
customers, while for the largest instances
(Table 4), unserved customers are frequently
offset against additional tours.

346

International Journal for Traffic and Transport Engineering, 2022, 12(3): 340 - 351

Table 2.1
Results of Ruin & Recreate Algorithm on the 20 Customers’ G-Vrp Instances (U)

VNS/TS R&R (JSprit)
Best (mi) # m # c Best (mi) # m # c %f

20c3sU1 1797,49 6 20 1797,49 6 20 0,00
20c3sU2 1574,77 6 20 1574,77 6 20 0,00
20c3sU3 1704,48 7 20 1704,48 7 20 0,00
20c3sU4 1482,00 6 20 1482,00 6 20 0,00
20c3sU5 1689,37 5 20 1689,37 5 20 0,00
20c3sU6 1618,65 6 20 1618,65 6 20 0,00
20c3sU7 1713,66 6 20 1713,66 6 20 0,00
20c3sU8 1706,50 6 20 1706,50 6 20 0,00
20c3sU9 1708,81 6 20 1708,81 6 20 0,00
20c3sU10 1181,31 5 20 1181,31 5 20 0,00

Table 2.2
Results of Ruin & Recreate Algorithm on the 20 Customers’ G-Vrp Instances (C)

VNS/TS R&R (JSprit)
Best (mi) # m # c Best (mi) # m # c %f

20c3sC1 1173,57 4 20 1173,57 4 20 0,00
20c3sC2 1539,97 5 19 1539,97 5 19 0,00
20c3sC3 880,20 3 12 880,20 3 12 0,00
20c3sC4 1059,35 4 18 1108,46 4 18 4,43
20c3sC5 2156,01 7 19 2179,42 7 19 1,07
20c3sC6 2758,17 8 17 2758,17 8 17 0,00
20c3sC7 1393,99 4 6 1393,99 4 6 0,00
20c3sC8 3139,72 9 18 3139,72 9 18 0,00
20c3sC9 1799,94 6 19 1808,59 6 19 0,48
20c3sC10 2583,42 8 15 2583,42 8 15 0,00

Table 2.3
Results of Ruin & Recreate Algorithm on the 20 Customers’ G-Vrp Instances (S)

VNS/TS R&R (JSprit)
Best (mi) # m # c Best (mi) # m # c %f

S1_2i6s 1578,12 6 20 1578,12 6 20 0,00
S1_4i6s 1397,27 5 20 1397,27 5 20 0,00
S1_6i6s 1560,49 5 20 1571,29 5 20 0,69
S1_8i6s 1692,32 6 20 1692,32 6 20 0,00
S1_10i6s 1173,48 4 20 1173,48 4 20 0,00
S2_2i6s 1633,1 6 20 1645,8 6 20 0,78
S2_4i6s 1532,96 5 19 1505,06 6 19 -1,82
S2_6i6s 2431,33 7 20 2431,33 7 20 0,00
S2_8i6s 2158,35 7 16 2175,65 7 16 0,80
S2_10i6s 1958,46 6 17 1792,45 6 17 -9,26

S1_4i2s 1582,2 6 20 1582,2 6 20 0,00
S1_4i4s 1460,09 5 20 1460,09 5 20 0,00
S1_4i6s 1397,27 5 20 1397,27 5 20 0,00
S1_4i8s 1397,27 6 20 1397,27 6 20 0,00
S1_4i10s 1396,02 5 20 1396,02 5 20 0,00
S2_4i2s 1059,35 4 18 1106,29 4 18 4,24
S2_4i4s 1446,08 5 19 1446,18 5 19 0,00*
S2_4i6s 1434,14 5 20 1434,23 5 20 0,00*
S2_4i8s 1434,14 5 20 1484,61 6 20 3,52
S2_4i10s 1434,13 5 20 1434,23 5 20 0,00*

347

Mahmoud A. et al. Adapting JSprit for the Electric Vehicle Routing Problem with Recharging: Implementation and Benchmark

Table 3
Results of Ruin & Recreate Algorithm on the 111 Customers’ G-Vrp Instances

VNS/TS R&R (JSprit)
Best (mi) # m # c Best (mi) # m # c %f

111c_21s 4797,15 17 109 4910,76 17 109 2,36
111c_22s 4802,16 17 109 5167,42 18 109 7,60
111c_24s 4786,96 17 109 4965,51 18 109 3,73
111c_26s 4778,62 17 109 4985,56 18 109 4,33
111c_28s 4799,15 17 109 5101,43 18 109 6,30

Table 4
Results of Ruin & Recreate Algorithm on the (200 – 500) Customers’ G-Vrp Instances

VNS/TS R&R (JSprit)
Best (mi) # m # c Best (mi) # m # c %f

200c_21s 8963,46 35 192 9506,93 32 191 -
250c_21s 10800,18 39 237 12007,94 41 236 -
300c_21s 12594,77 46 283 14469,29 50 282 -
350c_21s 14323,02 51 329 16156,95 55 328 -
400c_21s 16850,21 61 378 19330,38 65 376 -
450c_21s 18521,23 68 424 22717,95 78 423 -
500c_21s 21170,9 76 471 25446,35 85 469 -

A s t he t ables show, JSpr it present s
promising solutions for the small instances.
Additionally, the extension shows a better
performance than the VNS/TS approach
in terms of execution time (for the defined
number of iterations). For instance, for the
“U” instances, our extension was able to
match the solutions found with VNS/TS
with an average execution time of 9 seconds
versus 39 seconds. For the larger instances,
we expect that increasing the number of
iterations would lead to solutions closer to
the best solutions known in the literature,
resulting in longer execution times.

6. Discussion

The benchmark study was subject to a
sensitivity analysis, and we tried different
variations of ruin strategies (Random, Worst,
String, Radial, Cluster). We identified that
the best ruin strategy is to randomly select
between the different approaches at each
iteration of the algorithm. There is no
preprocessing phase in our implementation,
the algorithm tries to assign all customers

in an instance. Instead of having a hard
constra int to v isit a l l customers, our
algorithm adds a penalty when a customer is
not visited, in consequence, we cannot ensure
that all clients are served. This is the case of
our results in Table 4. The fact that not all
customers are visited in all instances is largely
related to our choice of the penalty value.

Several design decisions have been taken
when implementing charging activities into
JSprit, mainly regarding the Ruin strategy.
As is standard in the literature on Ruin &
Recreate, the algorithm maintains feasible
solutions after each step. Accordingly, the
existing JSprit modules are implemented
such that this condition holds implicitly after
applying a Ruin strategy. No additional checks
for constraint violations are performed after.
However, the energy consumption constraint
may be violated when removing a recharging
activity from a vehicle’s route.

We have considered two options to solve
the issue: As one option, a Recreate strategy
may have been introduced that can repair

348

International Journal for Traffic and Transport Engineering, 2022, 12(3): 340 - 351

any ruined solution. W hile it would be
the more f lexible option in the conceptual
structure of the Ruin & Recreate approach,
it would require inserting charging activities
independently of the jobs, which, in turn,
would lead to considerable changes in
the core implementation of JSprit, where
insertions are job-based.

Hence, our chosen approach is to introduce
customized versions of the existing Ruin
strategies to avoid creating ruined solutions
with constraint violations. This approach has
the advantage of being less invasive to the
existing code base and following the implicit
policy of existing Ruin strategies. However,
the approach prevents the removal of
recharging activities that are relevant for the
ruined route but not necessarily for a follow-
up solution. This adds more complexity to
the algorithm and may also restrict the search
space or slow down convergence. The topic
provides potential for future research.

For now, our implementation has been tested
with up to 500 customers. Beyond that limit,
the run time of the extensive search for
potential charging activities along a route
becomes prohibitive. To remedy the problem,
more ef f icient strategies for inserting
charging activities may be introduced in the
future (Kullman et al., 2021). Furthermore,
we can build on multi-threading functionality
of JSprit to gain eff iciency. W hile it is
available for standard problem formulations,
it has not yet been adapted to be compatible
with our extensions.

7. Conclusion

In this paper, we present an extension
for the open-source VR P solver JSprit

that considers electric vehicles including
energy consumption, charging constraints
and charging infrastructure. W hile the
performance of the JSprit implementation
is inferior to existing benchmarks from
literature on the Green Vehicle Routing
Problem, we can show that it frequently
reproduces best-known solutions for small-
scale problems. To our knowledge, it is the
first time that the problem has been solved
using the Ruin & Recreate approach which
is the basis of JSprit.

The main advantage of our approach is that
it is based on an open-source and extensible
framework that already covers a wide range
of VRP variants. For the future, we propose
methodological improvements in terms of
varying search heuristics, and speed-ups
through parallelization.

Acknowledgements

The code related to the ex per iments
presented in this paper can be obtained
from the authors, and the detailed results
with the sensitivity analysis can be shared
upon request.

This paper presents work developed at
IRT SystemX in the scope of the project
LEAD, which has received funding from the
European Union’s Horizon 2020 research and
innovation program under grant agreement
no. 861598. This work has also received
funding from the Région Île-de-France
within the frame of the Future Cities Lab.
The content of this paper does not ref lect
the official opinion of the European Union.
Responsibility for the information and views
expressed in this paper lies entirely with
the authors.

349

Mahmoud A. et al. Adapting JSprit for the Electric Vehicle Routing Problem with Recharging: Implementation and Benchmark

References

Bakach, I.; Campbell, A.M.; Ehmke, J.F. 2021. A two‐tier
urban delivery network with robot‐based deliveries,
Networks 78(4): 461-483.

Bean, W.L.; Joubert, J.W. 2019. Modelling receiver
logistics behaviour. In Procedia Computer Science, The 10th
International Conference on Ambient Systems, Networks and
Technologies (ANT 2019) / The 2nd International Conference
on Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated
Workshops 151: 763–768.

Christiaens, J.; Berghe, G.V. 2020. Slack Induction
by String Removals for Vehicle Routing Problems,
Transportation Science 54(2): 417–433.

Erdoğan, S.; Miller-Hooks, E. 2012. A Green Vehicle
Routing Problem, Transportation Research Part E:
Logistics and Transportation Review, Select Papers from the
19th International Symposium on Transportation and Traffic
Theory 48(1): 100–114.

Ewert, R.; Martins-Turner, K.; Thaller, C.; Nagel, K.
2021. Using a route-based and vehicle type specific
range constraint for improving vehicle routing problems
with electric vehicles, Transportation Research Procedia
52: 517-524.

Gardrat, M. 2019. Survey methodology: the decoupling
of household purchases and recovery of goods [In
French: Méthodologie d’enquête: le découplage de
l’achat et de la récupération des marchandises par les
ménages] [Rapport de recherche] LAET (Lyon, France);
Métropole de Lyon. 114p.

Goeke, D. 2019. Granular tabu search for the pickup and
delivery problem with time windows and electric vehicles,
European Journal of Operational Research 278(3): 821–836.

Hörl, S.; Balac, M. 2021. Synthetic population and travel
demand for Paris and Île-de-France based on open and
publicly available data, Transportation Research Part C:
Emerging Technologies 130: 103291.

Horl, S.; Puchinger, J. 2022. From synthetic population
to parcel demand: A modeling pipeline and case study
for last-mile deliveries in Lyon. Transportation Reaseach
Arena (TRA), Lisbon, Portugal.

JSprit. 2022. A Java based, open-source toolkit for
solving rich traveling salesman (TSP) and vehicle routing
problems (VRP). Available from Internet: <https://
jsprit.github.io/>.

Karkula, M.; et al. 2019. Comparison of capabilities of
recent open-source tools for solving capacitated vehicle
routing problems with time windows, Carpathian Logistics
Conference, Zakopane, Poland, 72-77.

Kullman, N.D.; Froger, A.; Mendoza, J.E.; Goodson,
J.C. 2021. frvcpy: An open-source solver for the fixed
route vehicle charging problem, INFORMS Journal on
Computing 33(4): 1277-1283.

Martins-Turner, K., et al. 2019. Agent-based Modelling
and Simulation of Tour Planning in Urban Freight
Traffic. Transportation Research Procedia, Urban Mobility
– Shaping the Future Together mobil.TUM 2018 – International
Scientific Conference on Mobility and Transport Conference
Proceedings 41: 328–332.

Martins-Turner, K., et al. 2020. Electrification of Urban
Freight Transport - a Case Study of the Food Retailing
Industry. Procedia Computer Science, The 11th International
Conference on Ambient Systems, Networks and Technologies
(ANT) / The 3rd International Conference on Emerging
Data and Industry 4.0 (EDI40) / Affiliated Workshops 170:
757–763.

350

International Journal for Traffic and Transport Engineering, 2022, 12(3): 340 - 351

Montoya, A. et al. 2015. The electric vehicle routing problem
with partial charging and nonlinear charging function (Research
Report). LARIS. 11p.

Mucowska, M. 2021. Trends of Environmentally
Sustainable Solutions of Urban Last-Mile Deliveries
on the E-Commerce Market—A Literature Review,
Sustainability 13(11): 5894.

Patella, S.M.; Grazieschi, G.; Gatta, V.; Marcucci, E.;
Carrese, S. 2020. The adoption of green vehicles in last
mile logistics: A systematic review, Sustainability 13(1): 6.

Schlenther, T.; Martins-Turner, K.; Bischoff, J.F.; Nagel,
K. 2020. Potential of private autonomous vehicles for
parcel delivery, Transportation Research Record 2674(11):
520-531.

Schneider, M.; Stenger, A.; Goeke, D. 2014. The
electric vehicle-routing problem with time windows
and recharging stations, Transportation Science 48(4):
500-520.

Schrimpf, G.; Schneider, J.; Stamm-Wilbrandt, H.;
Dueck, G. 2000. Record breaking optimization
results using the ruin and recreate principle, Journal of
Computational Physics 159(2): 139-171.

Starship. 2022. Available from Internet: <https://www.
starship.xyz/>.

Vigo D.; Toth, P. 2014. Vehicle Routing: Problems, Methods,
and Application, Second Edition. Volume 18 of MOS-SIAM
Series on Optimization. Society for Industrial and
Applied Mathematics. 481p.

Villanueva, R.S. 2020. A pragmatic approach to improve
the efficiency of the waste management system in
Stockholm through the use of Big Data, Heuristics
and open source VRP solvers: A real life waste collection
problem; Stockholm’s waste collection system and
inherent vehicle routing problem, VRP. Degree project
in electrical engineering, second cycle, KTH.

Vosooghi, R.; Puchinger, J.; Bischoff, J.; Jankovic, M.;
Vouillon, A. 2020. Shared autonomous electric vehicle
service performance: Assessing the impact of charging
infrastructure, Transportation Research Part D: Transport
and Environment 81: 102283.

Yu, S.; Puchinger, J.; Sun, S. 2020. Two-echelon urban
deliveries using autonomous vehicles, Transportation
Research Part E: Logistics and Transportation Review 141:
102018.

351

Mahmoud A. et al. Adapting JSprit for the Electric Vehicle Routing Problem with Recharging: Implementation and Benchmark

