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Abstract: This paper offers several ways to classify time series data recorded by cyclists in an 
urban area like Copenhagen to predict and classify dangerous situations and areas. Therefore, 
several neural networks used a training dataset of bicycle trips consisting of position data and 
associated system modes derived from a Support Vector Machine. The system modes indicate 
if cyclists are in dangerous situations. The model used position data and derived features like 
velocity, acceleration, angular deviation, and the deviation of the previous cycling behaviour 
in the respective trip. A gated recurrent neural network model achieved the best resulting 
accuracy of 83 % in a binary classification between accident and no danger. Through this, 
it was possible to determine if a bicycle accident happened due to the cyclist’s environment 
e.g., cobblestones, or due to their cycling behaviour. This way the dataset and the approved 
machine learning model can show municipality of cities which spots are currently posing a 
threat for cyclists. Furthermore, the developed algorithm can pose as a basis for a cyclist app 
that warns its user about dangerous driving behaviour or upcoming danger spots. All the 
developed algorithms can be transformed to other cities.

Keywords: accident analysis, bicycle position data, danger classification, neural network, 
trip segmentation.
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1. Introduction

In recent years, the bicycle has become more 
and more popular not only as a recreational 
device, but also as an everyday vehicle, 
especially in cities. On the one hand, it 
convinces with its practicality and its price 
compared to the car, on the other hand, it is 
an emission-free vehicle, which is important 
for meeting the climate goal of the global 
community. Therefore, it is not surprising that 
an increasing number of cities are shifting their 
focus away from the car as the mobility solution 
for individuals and expanding alternative 
modes of mobility such as the bicycle.

However, with the increased traffic volume 
of cyclists, the number of traffic accidents 
involv ing c ycl ists i s a lso increasing 
(International Transport Forum, 2013). 
Furthermore, many collisions involving 
cyclists are not reported and therefore cannot 
be recorded in statistics, so the dark figure 
is likely to be a lot higher (International 
Transport Forum, 2013; Watson, Watson, & 
Vallmuur, 2015). Hence projects like SimRa 
(Karakaya, Hasenburg, & Bermbach, 2020) 
exist that make it possible for cyclists to report 
an accident or a dangerous situation during 
a bicycle trip. With this data they identify 
dangerous locations within cities.
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To ensure the safety of cyclists, many 
cities like Copenhagen (Cycling Embassy 
of Denmark, 2018) invest money in the 
prevention of cycling accidents and general 
road safety. The Copenhagen City Council 
has set a target to reduce the number of 
serious injuries or fatalities on the roads to 
zero by 2025. Values from 2017 report 117 
serious injuries or fatalities in Copenhagen, 
with cyclists or pedestrians involved in 70% 
of the cases.

This paper took up and expanded on the 
point of accident prevention for cyclists by 
using machine learning methods with time 
series data of cyclists in Copenhagen. The 
training dataset consisted out of position data 
plus calculated system modes of bicycle trips 
collected with the helmet of the company 
Hövding in Sweden. The system modes 
describe with the help of a Support Vector 
Machine (SVM) (Steinwart & Christmann, 
2008) if a trip is in a dangerous situation 
(Lindqvist & Roos, 2020). By analysing 
parts of the time series, hereafter referred 
to as trip segments, it was possible to identify 
areas that have an increased risk of accidents. 
The driving behaviour of trip segments 
that end in accidents are crucial for such 
an investigation. Different neural networks 
from the field of supervised learning were 
used as analysis tools, which recognize the 
different reasons for accidents through 
pattern recognition. This paper stands out 
in the fact that it analyses trip segments 
from cyclists to draw conclusions if their 
driving behaviour leads to an accident or 
the environment of the location the accident 
happens. 

This research presents for municipalities of 
cities the opportunity to show places that are 

currently posing as a threat for cyclists. The 
results of this paper will be used to develop 
a mobile app that is able to warn cyclists 
about dangerous places as well as dangerous 
cycling behaviour.

2. Related Works

Analysing position data trajectories with 
various machine learning methods to predict 
traffic f low or driving behaviour is part of 
several papers over the last few years.

Using taxi position data trajectories, Wang et 
al. (2018) investigate behavioural patterns of 
taxi drivers in Chinese cities. Their aim is to 
detect taxi fraud by identifying conspicuous 
taxi routes through hierarchical clustering. 
Taxi fraud happens when a taxi takes a 
longer route than usual in order to earn 
the driver more money. To detect this, the 
authors compare how often certain driving 
decisions are made compared to others on 
similar trajectories. In addition to Global 
Positioning System (GPS) data, they also 
use video data. Their resulting algorithm 
enables them to automatically detect four 
conspicuous patterns of behaviour among 
taxi drivers and thus uncover possible cases 
of fraud.

Jiang et al. (2017) present a Recurrent 
Neural Network (R NN) for identifying 
means of transportation based on position 
data trajectories. They distinguish between 
four categories of transportation: walking, 
cycling, bus and car. The RNN achieves 98 % 
accuracy using point-based and segment-
based features such as speed and average 
speed of the segment. The dataset consists 
of approximately 2.2 million GPS records 
in Beijing, China.
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A similar paper from Dabiri et al. (2018) 
achieves a high accuracy for identifying 
means of transportation based on raw GPS 
trajectories with a Convolutional Neural 
Network (CNN). In addition to walking, 
cycling, bus and car they also identify if the 
GPS trajectories originate from a person on 
a train. They use a CNN, which is common 
in computer vision (Krizhevsky, Sutskever, 
& Hinton, 2017), due to its ability to find 
local patterns.

In (Saiprasert, Pholprasit, & Thajchayapong, 
2 017) t he aut hors present d i f ferent 
approaches to identify driving events such 
as breaking or turning. Their data does not 
come from devices installed in the vehicle, 
but from smartphones of the passengers. 
They use speed, GPS position and cardinal 
direction as input for their algorithms. 
The algorithms enable them to distinguish 
sudden driving manoeuvres from normal 
driv ing manoeuvres. Consequently, it 
is possible to deduce whether there is a 
potentially aggressive driving behaviour.

In addition, Holmgren et al. (2020) use 
position data trajectories to identify unsafe 
places for cyclists within the city of Lund in 
Sweden. Their work is close to the present 
paper in that they analyse bike data and 
use a Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) 
algorithm as presented in (Ester, Kriegel, 
Sander, & Xu, 1996). Their dataset consists 
of position data points that are classified as 
unsafe by cyclists themselves and not by 
automatically calculated value of an SVM. 
While cycling, cyclists have the possibility to 
manually record an unsafe place by pressing 
a button on the handlebar. The current 

GPS position and time is then stored. The 
data is analysed by the clustering methods 
k-means (MacQueen, 1967) and DBSCAN. 
Holmgren et al. (2020) thus detect several 
clusters within Lund that are classified as 
unsafe for cyclists. However, the present 
work uses position data recorded by cyclists 
wearing the airbag helmet of Hövding. It 
classifies each position data point with a 
system mode via an SVM. The system mode 
indicates dangerous situations.

The company Hövding in Sweden produces 
a special kind of bicycle helmet, which 
consist of an airbag that elevates in case of 
an accident. As part of the latest version 
Hövding 3, the helmet connects with the user’s 
smartphone which then collects data from 
the helmet. Besides the position data und 
timestamp the helmet uses a system mode 
which calculates if there is an accident or a 
low, medium or high danger situation for 
the cyclist.

The dataset of Hövding is subject of a 
previous study by Lindqvist and Roos 
(2020). They research hazard clusters in the 
city of Malmö in Sweden by using DBSCAN. 
Comparing the clusters determined by 
DBSCAN with accident data provided by the 
Swedish Traffic Accident Data Acquisition 
(STRADA, 2021) most accidents detected 
by the Hövding helmet and registered by 
STRADA corresponded to a category which 
did not include fixed barriers such as speed 
bumps or cobblestones nor construction 
work and therefore could not be explained 
by external influences.

T he present paper f i l l s th is gap and 
distinguishes for each hazard cluster whether 
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it belongs to a dangerous environment or 
a dangerous driving behaviour. R NNs 
and CNNs (Dabiri & Heaslip, 2018; Sun, 
Chen, & Sun, 2019) are used to classify each 
trajectory running through a danger cluster 
detected by the Hövding helmet. In contrast 
to Lindqvist and Roos (2020), this paper uses 
a dataset collected in the city of Copenhagen 
in Denmark. However, after collecting the 
necessary amount of bicycle trip data all the 
developed algorithms of this paper can be 
transformed onto other cities.

3. Data and Data Preprocessing

3.1. Data

The geographical position of the bicycle data 
used consists of recorded data of latitude, 
longitude and altitude, a timestamp and current 
status or system mode which describes if a trip 
is in a dangerous situation (see Table 1). The 
helmet records the data with sensors, collects 
and stores it in JSON trip files. The data of 
each trip belongs to one pseudonymized user.

Fig. 1. 
Multidimensional Trip Data
Note: A multidimensional trip consists of altitude, latitude, longitude, timestamp and a system mode 
which describes the danger status of a data point.

For the current status of each position in the 
trip, a SVM embedded in the bicycle helmet 
calculates the system mode which can be used 
for classification (Steinwart & Christmann, 
2008). System modes 2 to 6 represent a 
danger status and are the central component 
for danger classif ication (see Table 1). 
Accident trips end with system mode 2, then 
the helmet is inflated. Table 1 describes the 
original system modes determined by the 
SVM of the Hövding helmet in the first two 

rows. The third row shows the mapping of 
this data for the purpose of this paper so 
that only four relevant classes are left. As the 
helmet records system modes 2 to 6 in trips 
which also contain system modes 8 and 9 at 
some position points, those can be mapped to 
system mode 1 which represents no danger. 
This study deletes data points with system 
modes 0, 6 and 7 because they are lacking 
relevant information and are very seldomly 
recorded.
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Table 1
System Modes of the Hövding 3 with Corresponding Mapping

System Mode 0 1 2 4 5 6 7 8 9

Description Bluetooth 
inactive

Bluetooth 
active Deployed SVM 

Low
SVM 

Medium
SVM 
High

Active 
Misuse Battery Low Temperature

out of range

Mapping - no danger accident danger 
low

danger 
medium - - no danger no danger

From this original data several features are 
derived. The original and derived data is 
then divided into three groups: 

Group 1 consists of recorded numerical and 
categorical features. The numerical features 
are latitude, longitude and altitude which 
are z-score normalized (Grus, 2019). The 
derived information from timestamp such 

as the weekday, time of day and time of hour 
in 5 minute intervals treats these values as 
categorical. Group 2 consists of the derived 
features: distance d, velocity v, acceleration 
a, slope, and a velocity vector (see Table 
2). Also some features are derived from 
timestamps and contain information on 
which weekday or during which time of day 
accidents occur (see Table 3).

Table 2
Numerical Feature Calculation

Feature Calculation Range Range after 
Normalization

distance  
d [m]

The Haversine formula* (Sinnott, 1984) takes the latitude and 
longitude of points P1 = (φ1, λ1) and P2 = (φ2, λ2)  in radians as 

well as the radius of Earth r as input.
[0; 48.25] [-2.33; 7.98]

velocity  
v [m/s] distance / time difference [0; 13.55] [-2.32; 3.74]

acceleration  
a [m/s2] distance / time difference2 [0; 13.7] [-1.7; 6.88]

slope altitude difference / distance [-0.34; 0.34] [-5.54; 5.69]

vx
vy

Use angle α determined by three consecutive locations,  
see Figure 2, and velocity to calculate a velocity vector:  [-13.4; 10.33]

[-10.73; 11.0]
[-3.42; 6.21]

[-9.98; 10.31]

Table 3
Categorical Features

Feature Weekday Time of Day [h] Time of Hour [5 min] Day of Year
Extraction from timestamp timestamp timestamp timestamp

Range [0; 6] [0; 23] [0; 11] [0; 364]
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This study models periodicity over time 
(i.e. the minutes 0, 1, 2 … 59, 0, 1, 2 of each 
hour) with sine and cosine transformations, 

see Figure 2, and treats the periodicity 
in weeks, time of day and day of year the 
same.

Fig. 2. 
Modelling of Periodicity of Time of Minute Signal with Sine (Orange) and Cosine (Blue) Transformations

As the range of the amplitudes of the sine 
signal to the interval [-1, 1] limits the data, 
no further normalization has to be done. The 
Haversine formula (Sinnott, 1984) calculates 
the distance d between two latitude/longitude 

values which one uses for calculating velocity v, 
acceleration a and slope. This study calculates 
the angle of three consecutive points in a trip 
from the cyclist’s point of view to capture 
situations such as turning left or right.

Fig. 3. 
Calculation of the Angle of Three Consecutive Points P1, P2 and P3 in a Trip
Note: Arcos tangent calculates the angle of a vector with respect to the x-axis, taking into account the 
position in the quadrants. Three consecutive points P1, P2 and P3 determine the vectors  and 

. Tangent calculates the corresponding angles α and β with respect to the x-axis. The angle lies 
between 0° and 180° for positive y-values and between 0° and -180° for negative y-values. Differences of 
angles of vectors towards the predecessor and successor determine the angle at the location within a tour. 
The difference of the two angles α and β determines the angle of the three consecutive points.
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Fig. 4. 
Distribution of the Angle of Three Consecutive Points and the Velocity

Straight-ahead driving is common which 
corresponds to 180°, see Figure 4. Trip 
segments start with velocity 0 and an angle 
of 180°.

Group 3 consists of average values and 
differences to these values calculated within 
the same trip. Also contained in group 3 is a 

number telling how long a cyclist is already 
on the road. This group allows conclusions 
on changes in the cyclists’ driving behavior 
per trip and how long a trip might be.

For an overview of the data concentration 
Seaborn violin plots (Waskom, 2021) display 
the features of every group:

 
Fig. 5.
Normalized Numerical Features in Group 1 (Left) and 3 (Right) in a Seaborn Violin Plot
Source: (Waskom, 2021)
Note: The numerical features in group 1 are latitude, longitude and altitude whereas group 3 consists of 
time since start t, velocity v and acceleration a, all in comparison to the values in the whole trip as well as 
average velocity during the trip, average acceleration, slope average and slope in comparison to the overall 
slope in a trip.

The following two images show the range of the numerical features in group 2 before and 
after normalization:
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Fig. 6. 
Not Normalized (Left) vs. Normalized (Right) Numerical Features in Group 2 using Seaborn 
Source: (Waskom, 2021)
Note: The numerical features in group 2 are the time difference, distance d, velocity v, acceleration a, 
altitude difference, slope, velocity in x- and y-direction, the weekday, hour and minute with sine and cosine 
transformations.

3.2. Data Cleanup

This study processes the data in several steps; 
one step is to handle erroneous or missing 
values (Chollet, 2018). In general this study 
uses trip segments with a minimum of a 30 
second period with about 10 data points.

Within the latitude and longitude values 
inaccurate values might occur because 
right after the start of a trip or after loss of 
connection the recorded position values 
show non-normal jumps. One method to 

determine inaccurate position data is to 
calculate and filter unrealistic velocity values 
(see Table 2) and drop their non-natural 
values.

Inaccurate altitude values can be detected 
by calculating the slope (see Table 2) and 
filtering unrealistic values. Known extreme 
altitude values of the city of Copenhagen are 
upper and lower limits for altitude values. 
Inaccurate altitude values are filled by 
correct altitude values if necessary using 
the free Open Topo Data API (Nisbet, 2020).

Fig. 7. 
Maps with Location Errors Before and After Cleanup
7a. Single Outlier Error 7b. Drop of Single Outlier 
and Interpolation of Locations

Fig. 8. 
Maps with Location Errors Before and After Cleanup
8a. Jumps in Locations 8b. Drop of Jumps

T he t i me d i f ference s bet ween t wo 
consecut ive tr ip locat ions var y f rom 
milliseconds to several minutes, most of 
them are 2.5 to 3 seconds long. Tiny time 

differences result in erroneous velocity 
calculations; the helmet often records them 
at the beginning of a trip or after large time 
gaps. This study drops time differences 
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smaller than 0.6 seconds in the dataset. 
Missing recordings can be interpolated 
considering a limit of 3 seconds and the mean 
time difference of a trip as interpolation step. 

If time differences are larger than 1.8 times 
the limit, one or more additional points are 
inserted. Time differences above 20 seconds 
lead to segmentation of a trip.

Table 4
Effects of the Cleanup Process on Recorded Trip Data

Before Cleanup After Cleanup %
Users 11,223 10,703 95.37 %
Trips 405,221 387,798 trips with 1128043 segments 95.70 %

Locations 103,708,834 100,747,851 (12,518,072 interpolated) 
113,265,923 total

97.14 % 
109.2 %

Trips with accidents 213 179 84.04 %

3.3. Preselection of Trip Segments 
around Danger Spots for Classification

In classif ication a category refers to a 
class and data points refer to samples. 
In supervised learning the known labels 
describe the association of a class with a 
sample (Chollet, 2018). This setup performs 
a single label multiclass classification where 
the networks determine the association to 
one class (Chollet, 2018). This study uses 
the system modes taken at the end of each 
trip segment at the nearest point around an 
accident as labels and so determines whether 
a certain trip segment ends with a danger 
spot because the helmet elevates. The four 
classes each make up 25 %:
• “No danger”: The helmet records 

“Bluetooth Active”.
• “Danger low”: The helmet records “SVM 

Low”.
• “Danger medium”: The helmet records 

“SVM Medium”.
• “Acc ident ”: T he hel met record s 

“Elevated”.

For supervised learning every class should 
have evenly distributed representations. 
Therefore the number of accidents limits the 
maximum number of trip segments in each 
class. 179 accidents remain after the cleanup 
process which greatly reduces the amount of 
data. In this study an additional criterion 
specifies that used trip segments should end 
in close proximity to an accident. In Figure 
9 on the left a rectangle surrounds accident 
points. The second left picture shows a trip 
segment which ends with an accident. Within 
a given square of 8 m around the danger 
spot, candidates for other trip segment end 
points occur (see the second right figure). 
Their segments require a given minimum 
of predecessors and should only be used 
once. To receive a balanced data set, one 
chooses the same numbers of candidates of 
each class as close as possible. In case a class 
does not end up with enough trip segment 
end points, they are selected them around 
other spots. A maximum number limits the 
amount of data points in one trip segment 
(see the right figure).
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Fig. 9. 
Select Trip Segment Data around Danger Spots
Note: For classification the trip segment end points within a given square around danger spots are selected 
equally distributed among the system modes. The four classes each make up 25 %. The trip segments are 
restricted by a maximum number of predecessors.

3.4. Preselection of Trip Segments around 
Danger Spots for Binary Classification

For a binary classification into “accident” 
and “no accident” the multiclass data can 
be reduced to only two classes. The first one 
consists of system mode 2 which indicates 
the helmet is elevated. The second one 
summarizes system modes which indicate 
a less dangerous situation. Therefore the 
first class is called “accident” and the second 
class is called “no accident”. Three different 
approaches make up the class “no accident”:
• Approach A chooses an equal amount of 

nearest trip segment end points around 
danger spots within all other system 
modes 1, 4, 5, 8 and 9 (see Table 1).

• Approach B chooses an equal amount 
of system mode 1 end points around a 
danger spot.

• Approach C chooses an equal amount 
of system mode 5 end points around a 
danger spot.

4. Neural Networks for Position Data 
Trips

The input data in our study consists of trip 
segments each consisting of data of the 
different feature groups, see section 3.1 to 
3.4. One takes the labels at the end of the 

trip segment at the nearest point around an 
accident. Four classes each make up 25 % of 
the input data: “no danger”, “low danger”, 
“medium danger” and “accident” in case of 
multiclass classification, otherwise only two 
classes are used. The input data splits itself 
into a training, a validation and a test set, 
each containing a balanced number of labels 
i.e. the system modes at the trip segment 
end points.

4.1. General Setup for all Models

This study tests and compares different 
models to ident i f y upcoming danger 
situations for cyclists. It dynamical ly 
preprocesses the same dataset for each feature 
group 1, 2 and 3 and inserts it into different 
neural network architectures using the same 
layer as Input Layer for all models. Figure 10 
shows an Input Layer for trip segments with 
30 data points for feature group 2 with the 
14 numerical features displayed in Figure 6. 
For each categorical feature an Embedding 
Layer creates a vector with the category size, 
see Figure 11. A TimeDistributed Layer 
wraps it in order to allow embedding on a 
temporal section (TensorFlow, 2021). The 
concatenated outputs of the numerical input 
layer and the wrappers provide a predefined 
output which is used as input for all models.
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Fig. 10. 
Generated Input Layer for Trip Segments with 30 Data Points, Feature Group 2 and 14 Numerical Features

Fig. 11. 
Generated Input Layer for Trip Segments for Feature Groups 1 and 2 with Overall 17 Numerical and 
246 Categorical Features
Note: The Input Layers shape consists of (time step × feature). In this example the Input Layer for groups 
1 and 2 processes 30 trip segment points, 17 numerical features and 246 categorical features, see Table 3. 
Each categorical feature is embedded separately, wrapped with a TimeDistributed Layer, afterwards all 
of them are concatenated. As a result a Concatenate Layer provides the Generated Input Layer which is 
fed into all models.

Different models use different layers, all of 
which end with a dense layer with a projection 
onto the two classes “no danger” and “accident” 
with a sigmoid activation recommended for 
binary classification by Chollet (2018). A 
loss function works as a measurement of 
the quality of the output when comparing 
predicted and expected or true values 
(Chollet, 2018). The BinaryCrossentropy 
loss function is used in this case. Taking 
the data and loss function into account an 
optimizer updates the network’s weights, 
which in this case is the Adam optimizer 
(Kingma & Ba, 2014). An early stopping 
callback function stops the training process to 
avoid overfitting. For multiclass, single-label 
classification all models end with a dense layer 
with a projection onto the four classes with 
a softmax activation. It uses the categorical 
crossentropy loss function (Goodfellow, 
Bengio, & Courville, 2018).

In this study all models are implemented 
with the Python programming language 
version 3.9 as well as the Deep Learning 
library Keras with the TensorFlow version 
2.5 backend with CPU support only.

4.2. Model Selection

Five different models (see Table A1- A2) 
categorize whether a certain location is 
dangerous or not. Every model uses both a 
single and a chain of dense layers. A Fully 
Connected Network (FCN) has multiple 
dense layers whose units connect every other 
unit in the following layer. Since Dabiri et. 
al (2018) achieves a high accuracy with 
a CNN in their case, this study also uses 
a CNN model. Besides computer vision 
utilizations a CNN can also be fed with time 
series respectively trip data (Goodfellow et 
al., 2018). 
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For processing sequenced data such as a 
bicycle trip segment, one can also use a 
recurrent-sequence processing GRU-based 
model (see Figure 11) as proposed by Cho et. 
al (2014). It achieved the highest accuracy 
with our data (see Table 6). This type of 
RNN keeps the information of the current 

time step unlike a traditional recurrent unit 
that drops the information. A GRU-based 
model is simpler than a Long Short-Term 
Memory (LSTM) model (Hochreiter & 
Schmidhuber, 1997). Each stack of layers 
ends with a dense layer for binary and 
multiclass, single-label classification.

Fig. 12. 
Structure of the GRU-based Model for Multiclass, Single-label Classification
Note: The GRU-based model inserts the Generated Input Layer into the GRU Layer with 8 units. Then a 
Dense layer with a single unit determines the accuracy for binary classification and 4 units for multiclass 
single-label classification.

Analysis with an LSTM model show weaker 
results (see Table A2 in the Appendices) the 
reason might be the higher complexity of 
these models compared to the small dataset 
in this study.

5. Results

All of the evaluated models to classify trip 
segments use different numbers of trip 
segment points (10, 20 and 30) as input as well 
as different combinations of feature groups.

5.1. Multiclass, Single-label Classification

For multiclass, single-label classification the 
FCN scored the best result of 39 % accuracy 
with danger prediction with 10 time steps 
using feature groups 1, 2 and 3 (see Figure 
13). The one-dimensional CNN is referenced 
as CNN 1D. 

The Table A1 in the Appendices shows the 
corresponding results with 20 and 30 time 
steps for each trip segment.

Fig. 13. 
Accuracy of Danger Prediction for Multiclass, Single-label Classification with Different Models and 
Feature Groups 1, 2 and 3 for 10 Time Steps
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To further analyze the results of the FCN 
in a multiclass, single-label classification a 
confusion matrix is created which shows how 
well predicted and true labels fit together 

(see Figure 14). A confusion matrix delivers 
good results if it has maximum values in the 
diagonal from the top left to the bottom 
right.

Fig. 14. 
Confusion Matrix for Multiclass, Single-label Classification with a FCN
Note: Most accidents are correctly classified whereas the prediction has difficulties with the categories “no 
danger”, “danger low” and “danger medium”. The confusion matrix refers to 36 labels per class of the test set.

Figure 14 shows difficulties for classifying 
“no danger”, “danger low” and “danger 
medium” but shows a lot of values on the 
diagonal. But as soon as one looks at the 

probabilities of the predictions for the 
individual classes, it can be seen that the 
results are relatively tight, see Figure 15. 
Few unique assignments exist.

Fig. 15. 
Probabilities of the Prediction of the Multiclass, Single-label Classification for Each Class

5.2. Binary Classification

Using 20 tr ip segment points binar y 
classification reaches the highest accuracy 
of 83 % with a GRU-based model with feature 

group 2 (see Table 5). With fewer and more 
time steps the accuracy of the GRU-based 
model worsens, too (see Table 6). More 
results of the other models are listed in Table 
A2 in the Appendices.
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Table 5
Results of Binary Classification with 8 Units: Danger Prediction

Model Linear FCN CNN 1D CNN 2D GRU
Feature Group 2 2 2 2 2

Accuracy – 20 Time Steps 42 % 78 % 79 % 43 % 83 %

The GRU-based model achieves high 
accuracies with feature group 2 as input for 
20 time steps and feature group 1 for 30 time 

steps for danger prediction (see Table 6). 
Using feature group 1 results in the lowest 
accuracy for 10 time steps.

Table 6
Best Results of Binary Classification with 8 Units: Danger Prediction

Model Feature Groups Accuracy – 10 Time Steps Accuracy – 20 Time Steps Accuracy – 30 Time Steps
GRU 1 67 % 75 % 82 %

2 75 % 83 % 78 %
3 76 % 72 % 71 %

1, 2 78 % 79 % 78 %
1, 3 71 % 76 % 78 %
2, 3 78 % 78 % 76 %

1, 2, 3 75 % 78 % 78 %

Tests for the GRU-based model with different units reveal that the results are similar.

Fig. 16. 
Similar Results of GRU-based Network with Different Units

A confusion matrix shows the results of the GRU-based model for binary classification:
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Fig. 17. 
Confusion Matrix for Binary Classification with a GRU-based Model
Note: The results of the confusion matrix are good: Most values are in the diagonal from top left to bottom 
right. 31 spots with no accident are classified correctly as well as 28 accident spots. 8 accident spots are 
falsely classified and 5 spots with no accident is classified as an accident. The confusion matrix refers to 
36 labels per class of the test set.

The confusion matrix in Figure 17 shows 
most of the values along the diagonal. This 
allows the conclusion that a prediction of 
the system mode can be made based on the 
trip time series data, which is inf luenced 
by the driv ing behaviour. There is an 
exception of 8 cases where no danger is 
predicted but an accident sti l l occurs 
which can be seen in the first column in 
the second row. These accidents might 

have occurred due to external inf luences 
or human failure. Figure 18 shows one of 
these accident locations located on a bridge 
next to a street sign. In the top view on the 
left the shadow of the street sign is shown. 
As the location is in close proximity to the 
obstacle, it might have caused the accident. 
Pedestrians could have also been involved. 
The exact cause of the accident cannot be 
derived from the data.

Fig. 18. 
Google Earth and Street View of Latitude/Longitude Values (55.686909, 12.563077) 
Source: (Google, 2022b, 2022d)

Another accident occurred next to a curb 
with cobblestones in close proximity to a 
pedestrian crossing, see Figure 19. The 
curb, cobblestones and mobile display 

are obstacles on which a cyclist might 
get stuck. Turning is also a risk factor as 
well as the pedestrians at locations like 
this one.
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Fig. 19. 
Google Earth and Street View of Latitude/Longitude Values (55.680494, 12.587165) 
Source: (Google, 2022a, 2022c)

6. Conclusion

Multiclass single-label classification danger 
prediction is done using a linear regression 
approach, a single or a chain of dense layers, 
a CNN, a GRU or a LSTM. The best result to 
classify the four classes “no danger”, “danger 
low”, “danger medium” and “accident” is 39 
% accuracy which the FCN model achieves 
using all the features as input. For the binary 
classification the same models are used as for 
multiclass, single-label classification. The 
GRU-based model achieves a high accuracy 
of 83 % using the calculated features as 
input. A more complex model such as a 
CNN or LSTM offers no added value. When 
adding feature group 2 to the input features, 
the most accuracy can be gained. Future 
studies could leave out feature group 1 as 
input for neural networks.

The results in this paper show that a prediction 
of the system mode and thus a dangerous 
situation can be made based on the trip data. 
This thesis cannot be applied where the neural 
network predicts no accident, but an accident 
happens. By analysis of these two accident 
locations with Google Earth and Street View 
the study shows that cobblestones, curbs, 
pedestrians and street signs may be external 
inf luences on the accidents. The binary 
classification supports the thesis.

The present research is limited by the 
amount of accidents recorded with the 
Hövding 3 which naturally l imits the 
amount of input data for the neura l 
networks. User specif ic data could be 
taken into account giving the respective 
user information about general driving 
behavior and whether or not a dangerous 
situation emerges from a deviation from 
that behavior. This data would not only 
set the cyclists’ behavior in the same trip in 
comparison, but the behavior in the cyclists’ 
all previous trips.

Around the danger spots there are few 
system mode 6 (“Danger High”) occurrences 
and therefore those trip segments are 
ignored. W hen more data is collected, 
they are included. In future studies highly 
dangerous spots are analyzed instead of 
accident spots.

The prediction algorithm can be integrated 
into a real time warning system for cyclists. A 
warning would appear in case a cyclist shows 
unusual and dangerous driving behavior. 
The cyclists could also be informed about 
upcoming construction sites and other 
obstacles. The results of this work might 
be used to report danger spots to authorities 
which might be interested in making them 
safer.
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Appendices
Table A1
Results of Multiclass, Single-label Classification with 8 Units: Danger Prediction

Model Feature Groups Accuracy – 10 Time Steps Accuracy – 20 Time Steps Accuracy – 30 Time Steps
Linear 1, 2, 3 27 % 24 % 35 %
FCN 1, 2, 3 39 % 37 % 37 %

CNN 1D 1, 2, 3 33 % 37 % 37 %
CNN 2D 1, 2, 3 29 % 32 % 29 %

GRU 1, 2, 3 34 % 34 % 38 %
LSTM 1, 2, 3 37 % 34 % 38 %

Table A2
Results of Binary Classification with 8 Units

Model Feature Group Accuracy – 10 Time Steps Accuracy – 20 Time Steps Accuracy – 30 Time Steps
Linear 2 55 % 42 % 43 %
FCN 2 79 % 78 % 69 %

CNN1D 2 78 % 76 % 79 %
CNN2D 2 53 % 46 % 43 %

GRU 2 75 % 83 % 78 %
LSTM 2 74 % 76 % 74 %

Table A3
Results of Binary Classification Danger Prediction with 8 Units

Model Time 
Steps

Feature 
Groups

Accuracy – Scenario 
A

Accuracy – Scenario 
B

Accuracy – Scenario 
C

FCN 20 2 66 % 63 % 76 %
30 2 65 % 69 % 79 %

GRU 20 2 71% 69 % 83 %
30 2 74 % 68 % 78 %
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