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Abstract: Examining the traffic of border crossing points is a priority task due to the exploitation 
of the advantages of the national economy. An essential part in this process is the examination of 
the autocorrelation in the data. In this article, a theoretical approach was used: the geographically 
located physical parameters were removed, and random networks were generated and analysed 
to investigate the effect of autocorrelation. Spatial autocorrelation could explain up to nearly 
50 percent of the effects with a well-chosen spatial weight matrix. This article can also be 
interpreted as the first element of a research series, thus defining future research directions 
and the steps of generalizability of the models is crucial.
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1. Introduction

Determining the traffic at border crossing 
points is a priority task, as it can be used 
to examine numerous parameters that 
inf luence economy. On the one hand, 
these infrastructure elements are essential 
parts of the international trade networks, 
so even a small change in parameters can 
harm international relations (Brown and 
Anderson, 2015). In addition, they also 
have an impact on regional relations; thus, 
infrastructure can improve the well-being 
of the borderlands through several effects, 
such as cross-border commuting (Anderson 
et al., 2014; Szabó and Sipos, 2020), one-
day trips (Bradbury, 2013) or shopping 

tourism (Rietveld et al., 2001). Moreover, 
these infrastructure elements can create jobs, 
and in addition to facilitating commuting 
conditions, the number of border guards also 
has a significant influence on the number of 
jobs (Avetisyan et al., 2015).

Our research aims to prove under random 
conditions that the traffic data measured 
at cordon points on an object representing 
separation effect (for example, a country 
border) has spatial autocorrelation; thus, 
spatial econometric modelling techniques 
can be applied in their case.

As a transportation approach, the main 
characteristics between border sections 
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can be given as the difference between 
the density and the administrative rules 
for crossing. In terms of the density of 
border crossings, there is an infrastructure 
element in every 25 kilometres in Hungary. 
Although this statistic is better than the 
average for Central and Eastern Europe (75 
km), it lags far behind the average distance 
(5-6 km) for Western Europe (Illés, 2008). 
With joining the Schengen area within the 
European Union, the administrative barriers 
caused by borders have been significantly 
reduced, leading to an increase in the 
number of crossing points. Developments 
in this direction generally increase traffic 
at border crossing points, but the extent 
and manifestation of the interaction are far 
from clear.

The basis of the problem is that there are 
numerous methods for estimating border-
crossing flows and analysing the coefficients 
of the explanatory variables used, but 
these do not consider the effects caused 
by the whole system. In most cases, the 
development of traffic at pre-selected border 
crossings is examined with respect to time. 
Opasanon and Kitthamkesorn summarise 
the development opportunities for one 
of the busiest border crossings between 
Thailand and Malaysia (Opasanon and 
Kitthamkesorn, 2016). In his article, Burt 
examines traffic data for twelve border 
crossings to see that the 9/11 terrorist 
attacks did not have a significant negative 
impact on the Canada–US international 
shipping and bilateral relations (Burt, 
2009). Park and their co-authors’ primary 
goal is to determine the cost of delays caused 
by crossing borders. This is based on two 
bridges on the Buffalo–Toronto axis, which 
are available for HGV traffic (Park et al., 
2014). Border conditions in Southeast 
Europe were ana lysed by M i lt iadou 

and their co-authors for land transport 
chains (Miltiadou et al., 2017). However, 
each year, border traffic is inf luenced by 
previous years’ numbers and by traffic at 
other crossing points, analogous to Tobler’s 
definition of spatial autocorrelation (Tobler, 
1970).

In this article, a computer program is 
described which can be used for measuring 
the bare effect of spatial autocorrelation. The 
methodology is shown in detail, together 
with the first results. Finally, the suggestions 
for further development are presented.

2. Methodology

Since the goal is to set up a general model 
for the border crossing points, it is necessary 
to generate random networks. In general, a 
country’s transport network can be of three 
types (Baráth and Rimóczi, 2011):

• Centralised: the main routes are in a 
radial direction from the centre (often 
capital), which are connected in circles 
by other main roads (for example, 
Hungary);

• S q u a r e  l a t t ic e  (Ho r i g u c h i  a nd 
Sakakibara, 1998): major transport 
routes connect sign i f icant c it ies 
horizontally and vertically, the minor 
roads connect these infrastructures (for 
example, Germany, the United States, 
or the European International E-road 
network);

• Mi xed: a combination of the t wo 
aforementioned types (for example, 
Poland).

Since these networks are quite different from 
each other on their own, this article will 
focus on centralised networks. As random 
networks are applied, the methodology 
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is based on Monte Carlo simulation (von 
Neumann and Ulam, 1949), which is also 
very often used in the engineering sciences 
– e.g., Mályusz and Varga (2018) or Babu et 
al. (2021). In random networks, the expected 
traffic at the border crossings is assigned 
using a gravity model (Odlyzko, 2015), for 
which a spatial econometric model is built 
only by using the spatial autocorrelation 
parameter as an explanator y var iable 
(Anselin, 1988; Varga, 2002). Note that in 
this case, by random a randomly generated 
network is understood, which significantly 
differs from the mathematical definition – 
e.g., Barabási et al. (1999, 2000).

The study was performed in a MATLAB 
(MATLAB, 2019) environment, where a 
script was responsible for running it, calling 
five functions we defined. These were as 
follows:

• Network generation: generates a random 
graph that meets pre-set requirements. 
This determines the location of each 
settlement and connecting road, the 
country borders, and the border crossing 
points;

• Determining the population of cities: 
assigning the weights required for the 
gravity model as a population to each 
city in the model based on Auerbach’s 
rule (Auerbach, 1913; Hagget, 2001);

• Border crossing traffic generation: the 
third step is to generate border crossing 
traffic using the gravity model.

• Spatia l weight matr ix generation: 
generates the spatial weight matrix 
required for spat ia l econometr ic 
models based on the position of border 
crossings.

2.1. Network Generation

During network generation, the goal was to 
create a random centralised model similar to 
a real network, which is illustrated by Figures 
1 and 2 – Figure 1. is the real network, while 
Figure 2. is the modelled one. The network 
generation procedure is similar to the models 
constructed by Cats (2017). In terms of the 
structure of the network, it consists of a 
central city (this is the capital of the country 
being studied – later this will be necessary) 
surrounded by two concentric circles (in 
the distance of r1 = 1, and r1 + r2) and the 
number of roads from the capital leading 
to the first circle and from the first circle 
towards the second one. Thus, a total of three 
types of terrain points can be identified: 
intersections, cities, and border crossings, 
which can be identified by polar coordinates 
due to their circular design. The terrain 
points describing the network and their 
location are generated from the number of 
roads starting from the capital and from the 
value of r2 with random parameters.

Each terrain point is assigned to a country. 
Five countries were distinguished, one 
central (this is the country being studied) 
and four neighbouring countries. The total 
area of the central country is included in 
the model, while only that part of the 
neighbouring countries is included, which 
is close to the studied country. Numerous 
criteria were considered for the classification 
into countries, such as that the countries 
should be connected, that there should be 
no interference, and that the main country 
should be of an interpretable size; thus, half 
of the settlements in the inner ring should 
belong to the central country.
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Fig. 1.
Circular-radial Structure of the Road Network of the Carpathian Basin and Distances from Budapest
Source: own work, based upon OSM (OpenStreetMap contributors, 2017) data

Based on all this, networks like Fig. 2. are 
created (different colours for different 
countries, squares for cities, and dots for 
border crossings). In the case of borders, the 

colour means which country can be reached 
from the central country (green). Border 
crossing points that do not affect the central 
country were not considered.

Fig. 2.
Example of a Generated Network
Source: own work, edited in MATLAB (2019)

Due to the appl icat ion of the grav it y 
model, weights have to be assigned to the 
settlements, which in this case will be 
the population. This was also randomly 

generated based upon Auerbach (1913); as 
random networks are generated without real 
physical properties, we could assume ideal 
countries, where if we rank the settlements 
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according to their population, the population 
of the nth settlement is 1/n part of its capital 
(Hagget, 2001).

Thus, we only need to generate two values; 
one is the capital population (this was set 
between one and two million, as this is 
the typical size in Central Europe), and 
the place occupied by the given city in the 
given country in terms of size. In the central 
country, we assume as many settlements as 
we generated in the first model, but in the 
case of the four neighbouring countries, 
we assume more cities than are shown in 
the model – because the analysis is on the 
central country; thus, from the neighbouring 
countries only the borderlands are in our 
interest.

2.2. Border Crossing Traffic Generation

To set up the gravity model, in addition to 
the weights of each starting and destination 
point, the distance between them is also 
required. There are numerous different 
methods for calculating this, the best 
known being perhaps the Dijkstra algorithm 
(Dijkstra, 1959), but it is worth examining 
how travellers choose their route. Several 
studies have addressed how travel cost 
developments af fect those selecting a 
particular route (Bansal et al., 2020; Prato, 
2009). Thus, it is not enough to determine 
the shortest route, but it is also necessary to 
choose alternative routes. For this, we used 
Yen’s k shortest path algorithm (Yen, 1976).

In general, there are two types of algorithms 
for finding the shortest k path, one allowing the 
use of loops and the other being loopless (Yen, 
1976). Yen’s algorithm belongs to the latter 
category, which is closer to reality in the sense 
that road users do not choose an alternative 
route by inserting a circle into their path.

A fter identif y ing the shortest routes, 
the traffic demand between each pair of 
settlements can be determined. Naturally, 
Yen’s algorithm is also suitable for finding 
the shortest path, since the first shortest path 
is the same as the global one between two 
points. Thus, all the parameters required 
for the gravity model were produced. The 
essence is that the traffic demand between 
two settlements can be described by analogy 
with Newton’s law of universal gravitation 
known from physics (1).

 (1)

where:
•  F: attractive force;
•  γ: gravitational constant 

( );
•  m1, m2: mass of the point-like bodies;
•  r: distance vector between the point-

like bodies.

This methodology is very often used in the 
transport sciences (Hummels, 1999; Jung et 
al., 2008; Limão and Venables, 2001; Okubo, 
2004; Tagai et al., 2008) is an accepted traffic-
generating procedure. In the present case, we 
will use the “classic” approach, i.e., we have 
chosen the population as weights and the 
distance from the result of Yen’s algorithm. 
Thus, the travel demand (U) between two 
cities can be calculated by the following 
equation (2):

 (2)

where:
•  Pi: the population of the  settlement 

;
•  dij: the length of the shortest path 

between the  and the  settlement 
;

•  a: the exponent of the resistance.
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In the model, it is possible to set the 
resistance exponent, which in this case was 
taken to be 1.94 according to Hagget (2001). 
Since the transportation demands in the 
present case have no physical equivalent 
– thus, they only represent a theoretical 
demand burden the given section – the value 
corresponding to γ can be chosen to be 1.

The needs determined in this way can be 
assigned to the defined shortest routes 
between the two settlements. The distance-
decay property is used as the basis for this 
assignment (Hagget, 2001). Let  be 
the serial number of the given route between 
the settlement i and j onto which we assign 
part of the traffic. The volume of traffic on a 
given route can be calculated as follows (3):

 (3)

where:
•  : traffic volume between settlements 

i and j on the lth shortest path;
•  : distance between settlements i and 

j on the lth shortest path;
•  A: the parameter of distance-decay 

(currently also 1.94 (Hagget, 2001)).

Based on all this, if there is a border crossing 
point on the given route, the route’s traffic 
will be assigned to the border crossing 
point. Thus, the traffic of all crossings can 
be determined.

2.3. Setting up the Spatial Econometric 
Model

The spatial econometric model was set up 
based on the work of Attila Varga (Varga, 
2002) and Luc Anselin (Anselin, 1988). With 
the help of this, to verify our hypothesis, we 
seek answers to the following questions:

• Is there autocorrelation in the traffic 
data of border crossings?

• Does the spat ia l autocor relat ion 
parameter have a significant effect on 
border crossing traffic?

• To  w h a t  e x t e n t  d o e s  s p a t i a l 
autocorrelation alone affect border 
crossing traffic?

However, based on all this, the formation of 
initial expectations is not clear, as the direction 
of autocorrelation is difficult to determine. In 
the case of Hungary, the border crossing points 
follow a unique pattern. On the one hand, 
the main crossing points can be considered 
competing (negative autocorrelation), so a 
diversion can be observed between them. The 
negative autocorrelation is also reinforced, 
because smaller crossings, which usually have 
less traffic than the larger ones, are located 
next to the main crossings. In contrast, 
however, it can be observed that smaller 
border crossings play a complementary role, 
supporting a positive autocorrelation. It 
may be equally important that in the case of 
a popular destination, the traffic at adjacent 
border crossings also increases, reinforcing 
the theory of positive autocorrelation.

There are several tests to prove the presence 
of autocorrelation. The most frequently used 
tool for this is Moran’s I-test (Moran, 1948). 
The statistics can be calculated as follows 
(Varga, 2002).

 (4)

where:
• N: number of observations;
• xi, xj: data of two observed points;
• μ: the expected value of x;
• wij: the elements of the spatial weight 

matrix;
• S0: normaliser .
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Our analysis aims to prove that spatial 
autocorrelation influences the development 
of cordon point traffic volumes; thus, we 
will build a spatial autoregression model 
(SAR) from the tools of spatial econometric 
modelling (5). However, since this is a 
theoretical model, we examine the network 
alone without area-specific properties; thus, 
the exogenous variables can be omitted (6).

 (5)

 (6)

where:
• Y: the traffic f low vector of the border 

crossing points;
• a: constant term;
• ρ: spatial autocorrelation parameter;
• X: exogenous variable matrix;
• β: exogenous variable parameter vector;
• Wy: spatially lagged parameter vector;
• W: spatial weight matrix;
• ε: vector of the errors.

If we examine formula (5), we can see that 
everything is available except for the spatial 
weight matrix. Spatial weight matrices were 
determined based on our previous research 
(Szabó et al., 2017; Szabó and Török, 2018a, 
2018b). According to the literature (Getis, 
1991), two types of weight matrices were used. 
One is when the weight is the power of the 
reciprocal of the distance with some exponent 
(in this case, 1.94). The other is when the 
elements of the weight matrix can take the 
value , based on whether i and j are 
adjacent or not. The criterion of neighborhood 
can be defined as desired. Five weight matrices 
were used in the present analysis:

• Everything is connected to everything 
(inverse distance-based) – a) matrix;

• Only adjacent elements interact (inverse 
distance-based) – b) matrix;

• Only adjacent elements interact (binary) 
– c) matrix;

• Only those who go to one country 
interact (inverse distance-based) – d) 
matrix;

• Only those who go to one country 
interact (binary) – e) matrix.

For distance-based weight matrices, it is 
essential to choose the exponent of the 
distance. The program allows free parameter 
selection in this case; however, only 1.94 was 
examined (Hagget, 2001).

Three parameters were used for validation. 
The first parameter is R2, which describes 
the correlation. The second parameter is 
the significance level of the Moran’s I-test, 
which can be calculated using the z-test. 
This requires the mean and the standard 
deviation. There are several approaches 
to determining these, depending on what 
expected value and standard deviation 
can be assumed; these are summarised by 
Cliff and Ord (1972) based on the work of 
Moran (1950). Based on all this, the applied 
calculation formulas are as follows (if we can 
assume a normal distribution, the expected 
value can be used instead of the average) 
(Anselin, 1988; LeSage, 1998; Varga, 2002):

 (7)

 (8)
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where:
• W: unstandardised weight matrix;
• M :  p r o j e c t i o n  m a t r i x  (

);
• x: vector containing the observed data;
• U: unit matrix.

The third parameter is the significance level 
of the spatial autocorrelation parameter (ρ). 
Since we are talking about a classic linear 
regression model in the present case, the 
significance level can be determined by the 
t-test, where the value of the test statistics 
is the following (Nagy and Balogh, 2013):

 (9)

 (10)

 (11)

where:
• t: the t-value;
• Sb: the standard error of the parameters;
• Se: standard error of fit;
• : va lues est imated by the l inear 

regression model.

3. Results

As a result of the program presented in 
detail in the methodological part, due to the 
capabilities of the Monte Carlo simulation, 
a large amount of data was generated, the 

analysis of which requires the application of 
statistical methods. Three parameters need 
to be examined, which are the following:
• R2: the extent to which spatially lagged 

data affect traffic at border crossings;
• I: Moran’s I-test value;
• ρ: spatial autocorrelation parameter.

It would be useful to estimate the expected 
value of the listed parameters from the data, 
but to do this, their distribution must first 
be determined. For this, we used the R 3.4.0 
software (R Core Team, 2017), including 
the following libraries to test the different 
distributions:
• normal distribution: nortest (Gross and 

Ligges, 2015);
• e x ponent ia l  d i s t r ibut ion: M A SS 

(Venables and Ripley, 2002);
• gamma distribution: EnvStats (Millard, 

2013);
• universal distribution: spgs (Hart and 

Martínez, 2019);
• beta distribution: EnvStats (Millard, 

2013) and Sim.DiffProc (Guidoum and 
Boukhetala, 2020);

• Gumbel distribution: goft (Gonzalez-
Estrada and Villasenor-Alva, 2020).

A Kolmogorov–Smirnov-based test (Massey, 
1951) was set up for the studied parameters 
in each case. Except for two issues, we 
found a suitable distribution for each weight 
matrix for each parameter estimate, so their 
expected value can also be determined. This 
is illustrated in Table 1. 
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Table 1
The Distribution and the Expected Value of the Important Parameters

a) matrix b) matrix c) matrix d) matrix e) matrix

R2

Distribution Exponential Normal Normal Gamma Gamma
Statistics 0.0778 0.0635 0.0621 0.0813 0.0737
Significance level 0.6964 0.5998 0.6345 ≥ 0.1** ≥ 0.1**
Expected value 0.1577 0.4229 0.4548 0.1884 0.2071

I

Distribution Normal Normal Normal Normal Normal
Statistics 0.0568 0.0664 0.0457 0.0831 0.0882
Significance level 0.7635 0.5280 0.9508 0.2607 0.1877
Expected value -0.0673 0.5196 0.5050 0.2333 0.2445

ρ

Distribution Gumbel Normal Normal* Normal Normal*
Statistics 0.0841 0.0791 0.1198 0.0481 0.1810
Significance level 0.6017 0.2563 0.0069 0.9227 9.43E-07
Expected value -0.0257 0.7348 0.8247 0.3451 0.3847

* Nonsignificant
** The peculiarity of the R library used, and the command containing it is that it does not give a more 
accurate result.
Source: authors

4. Discussion

4.1. Evaluation

Based on the results, it can be said in general 
that when each border crossing affects all 
of the other crossings, it gives worse results 
than those in which the connection between 
infrastructures selected according to a rule 
and close to each other can be assumed. 
Furthermore, in the case of matrices b)–e), 
the binary matrices (c) and e)) have a higher 
R2 value, but their I value is lower, and no 
distribution could be fitted to the parameter 
ρ  in these cases, so their expected value 
cannot be assessed beyond doubt.

Examining the R2 values, the significantly 
higher value emerging from the assumption 
of the interaction of the adjacent border 
crossings is clear. On the one hand, a value 
around 0.4-0.5 assumes that the methodology 
is well applicable, as only spatially lagged 
parameters explain 40-50 percent of traffic. 
On the other hand, our previous results show 
(Szabó et al., 2017; Szabó and Török, 2018a, 
2018b; Sipos et al., 2021) that if we do not 
decompose the physical parameters from 

the border crossings, then neighbouring 
country-dependent assumptions represented 
by matrices d) and e) are proven to be more 
effective. The 20 percent explanatory power 
observed here may still be appropriate for 
multivariate regression analyses involving 
multiple parameters or spatial econometric 
analyses.

Mora n’s I  v a lues a s su me a pos it ive 
autocorrelation in all cases except for matrix 
a). In case a), the expected value obtained 
by the Monte Carlo simulation is so close to 
the theoretically expected value of Moran’s 
I that no clear conclusions can be drawn. 
Thus, the general ly accepted positive 
autocorrelation assumes that the various 
border crossing development programs – 
for example (Szalóki, 2017a, 2017b) – have 
an overall positive effect on cross-border 
traffic. This is also in line with international 
research findings – for example (Cavallaro 
and Dianin, 2020a, 2020b).

This is confirmed by the values of ρ if, except 
in case a), positive values are taken. It can be 
said that the use of binary weight matrices 
assumes higher ρ values; however, in these 
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cases, we did not find a distribution that can 
be proven to describe the results.

4.2. Opportunities for Improvement

This article can also be interpreted as a 
starting element of a series, as further 
analyses can be performed by generalising 
the fixed parameters. The generalisation can 
cover the following parameters:

• network generation;
• the exponent of the spatial resistance;
• determining the settlement population;
• the number of the shortest routes taken 

into consideration.

In this article, only centralised networks 
similar to Hungary have been developed 
during network generation. The analysis 
of further regular (e.g., square lattice – 
Germany, or mixed – Poland) or even 
completely ra ndom (e.g. ,  R oma n ia) 
network structures will be the subject of 
future research. It is also part of network 
generation that the location of settlements 
follows a simplified scheme in this article, as 
they are always located on the concentrical 
circles. However, this is far from the real-life 
situation in most cases, so it is advisable to 
incorporate it into the model in the future. 
Furthermore, the radial direction of the 
connecting roads is questionable in the 
case of centralised networks – such as the 
position and layout of the main roads 53 and 
54 in Hungary – the integration of which 
into the model will also be a future research 
direction.

As an exponent of spatial resistances, based 
on Hagget (2001), we used a value of 1.94 
in this article. However, this is only an 
empirical mean for the interval [0.4; 3.3] 
stated in the same research. By approaching 

the extreme values of the interval, additional 
rules could be identified.

The population estimates of the settlements 
were also based on the book of Hagget 
(2001); although, the property formulated 
for the parameters is a qualified case of the 
Zipf distribution (Zipf, 1949). However, 
later tests revealed that the  relation 
better describes the relationship between 
cities (Clauset et al ., 2009); thus, later 
implementation of this result may also be 
desirable into the methodology.

The last parameter to be mentioned is 
the number of shortest trips. Yen’s (1976) 
algorithm is suitable for finding the k shortest 
loopless path; however, the determination of 
the optimal value of k is not yet clear. In the 
present article, for the sake of simplification, 
we have chosen k = 10, but it will be seen 
later that this can only be considered as a 
mean. We hypothesize that the number of 
the shortest roads to be considered depends 
on the distance of the settlements and their 
location. As an example, we examined four 
relations in Hungary, which differ in distance 
and location. The relations are as follows:
• 1) Budapest–Debrecen;
• 2) Debrecen–Nyíregyháza;
• 3) Budapest–Székesfehérvár;
• 4) Győr–Szolnok.

The identified relations are illustrated in 
Table 2. Only the main road network was 
considered in determining the routes. Thus, 
we determined the total number of possible 
routes between the two settlements (n), the 
length of the shortest road in kilometres and 
time (d) – by considering the expressway 
network – and then given the percentage 
increase of the kth shortest route optimizing 
for both time and distance. Since we have no 
longer considered the expressway network 
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during the calculation of the k shortest 
path, k = 1 does not always correspond 
to the shortest road. The table’s Opt. and 
Par. columns show that we examine the 

shortest paths based on distance or time 
(Opt. – Optimisation) and which parameter’s 
percentage increase can be seen (Par. – 
Parameter).

Table 2
The Examined Journeys
No. n d Opt. Par. k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 15 k = 20 k = n

1) 28

232 
km Dist

Dist 100.86% 100.86% 102.16% 106.90% 109.05% 117.24% 131.47% 146.98% 173.71%
Time 140.00% 145.00% 146.43% 145.00% 155.00% 184.29% 185.71% 218.57% 272.14%

140 
min Time

Dist 100.86% 100.86% 106.90% 102.16% 109.05% 116.38% 130.17% 146.98% 173.71%
Time 140.00% 145.00% 145.00% 146.43% 155.00% 167.14% 188.57% 218.57% 272.14%

2) 4

50 
km Dist

Dist 100.00% 103.82% 219.32% 259.56% - - - - 259.56%
Time 100.00% 102.22% 200.00% 271.11% - - - - 271.11%

45 
min Time

Dist 100.00% 103.82% 219.32% 259.56% - - - - 259.56%
Time 100.00% 102.22% 200.00% 271.11% - - - - 271.11%

3) 6

65 
km Dist

Dist 107.44% 107.91% 131.78% 175.19% 182.95% - - - 182.95%
Time 170.45% 165.91% 188.64% 263.64% 218.18% - - - 222.73%

44 
min Time

Dist 107.91% 107.44% 131.78% 182.95% 182.95% - - - 175.19%
Time 165.91% 170.45% 188.64% 218.18% 222.73% - - - 263.64%

4) 66

226 
km Dist

Dist 100.44% 101.77% 107.52% 107.52% 110.18% 115.04% 123.01% 126.55% 171.68%
Time 176.38% 171.65% 177.17% 185.04% 192.13% 215.75% 210.24% 215.75% 275.59%

127 
min Time

Dist 101.77% 100.44% 107.52% 123.45% 107.52% 113.27% 116.81% 119.91% 146.02%
Time 171.65% 176.38% 177.17% 183.46% 185.04% 194.49% 198.43% 204.72% 276.38%

Source: authors

Based on Table 2, in the case of very close 
settlements, the number of possible routes 
does not reach 10 (there are still other 
directions, but in that case, the increase in 
time is no longer viable), and in the periphery 
– 2) – the value is lower. In contrast, long 
distances often lead to more paths, especially 
if we do not start from the centre – 1) – but 
pass through it – 4). In these cases, the 10th 
shortest path causes an increase of about 
15 and 20–40 percentage points in time 
compared to the k = 1 case, which can still 
be considered viable. Furthermore, it can be 
said that there are many alternate routes with 
roughly the same conditions in this range.

5. Conclusion

The aim of this paper was to create a basic 
theoretical model in which we generated 

random networks to determine the effect of 
spatial autocorrelation alone – deprived of 
real geographical parameters – on the traffic 
of border crossings. As a result, during the 
analysis of such spatial econometric models, 
weight matrices built upon the principle of 
only the close units have an effect on each 
other can be better applied instead of the 
everything is related to everyone approach.

We have analysed numerous cases with 
different weight matrices – a) to e) cases. The 
best weight matrices are those where only 
adjacent infrastructure elements interact 
with each other. In this case, the spatial 
parameter explains nearly 50 percent of the 
data; although, in cases with the matrices 
used in our previous articles, there seems 
to be nearly 20 percent of explanatory force, 
which can be considered as acceptable 
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with taking into consideration that in such 
cases the physical properties are available. 
Overall, the analysis shows that in the case 
of infrastructures crossing a separation 
effect, it may be worthwhile to examine 
the traffic estimation models from a spatial 
econometric point of view.

This article can be interpreted as the 
beginning of a series of articles. The model 
was programmed so that several parameters 
– exponent of the distance of the gravity 
model, exponent of the spatial weight 
matrix resistance – could be freely changed; 
however, currently only one value, the 
expected value, was examined. In addition, 
there are several parameters – the population 
of settlements, the applied network structure 
– from which we also considered a special 
case, but the implementation of other cases 
is expected only at the end of another 
programming process.
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