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1. Introduction

Today’s vehicles already have several driver 
assistant systems and in the near future, 
highly automated vehicles will also appear 
in road transport. Higher automation levels 
rely on disruptive technologies that cannot 
be tested and approved in the former way. To 
be able to guarantee future road safety also 
disruptive testing and validation methods 
are required (Szalay et al., 2017).

The present paper aims to present such a 
method, specifically to validate and verify 
a digital camera-based lane and traffic-sign 
detection algorithm developed in virtual 
environment, through experimental testing 
in autonomous driving cycles, implemented 
on 1:10 scale vehicle model platform as part 
of an embedded system’s software.

As far as the methodology is concerned, 1:10 
scale vehicle model platforms were modeled, 
as well as a simulation was created in a virtual 
simulation environment, followed by the 
development of a digital camera-based 
lane tracking and traffic-sign recognition 
algorithm, then the experimental testing of 
the created system in autonomous driving 
cycles, concluded with the embedded system 
software validation and verification.

2. Virtual Simulation Environment

In this section the PreScan simulation 
environment and its connection to Simulink 
is presented, besides a simple lane detection 
and tracking algorithm.

Moreover, the implementation of a global 
state machine in Simulink is shown as 
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well, necessary to realize both virtual and 
experimental testing on the developed 
system functionalities.

2.1. PreScan

PreScan is a simulation, development and 
evaluation virtual software environment 
within autonomous vehicles which can 

actually see the surroundings in which they 
are driving and can subsequently respond 
to it. Fig. 1 below gives an impression of 
the different engineering tasks and phases 
carried out using PreScan: building a 
relevant scenario, adding the appropriate 
control systems, modeling the sensor system, 
running the experiment (Ferencz and Zöldy, 
2020).

Fig. 1.
Modeling with PreScan
Source: (Tass International, 2021)

For the purposes mentioned before, sensor 
models containing real physical relationships 
can be used, in order to design scenarios 
based on real-life data. Once a certain 
concept has qualified, PreScan can also be 
used to check how robust it is under less 
ideal circumstances, making it a great tool 
for benchmarking various control system 
concepts, as it is connected to MATLAB/
Simulink.

Generally speaking, PreScan truly adds 
value when being used for concept studies, 
where today’s typical task is to evaluate 
different sensing systems or to evaluate 
different sensor fusion concepts (e.g., if 
radar with vision or radar with GPS would 

be the preferred combined system). Within 
PreScan all technologies and engineering 
disciplines can be seamlessly integrated since 
the prime interface is based on MathWorks’ 
MATLAB/Simulink.

2.2. Control Algorithm

PreScan helps us to develop, test and debug 
our control algorithms prior to uploading 
it to the actual vehicle. It would be a more 
difficult and time-consuming task if we had 
to test and debug our Simulink code in an 
already compiled C++ form. Fig. 2 shows 
the built virtual environment, essentially 
the same as the one used later in the case of 
vehicle model platforms.
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Fig. 2. 
The Built PreScan Virtual Environment with Lane Marker Sensor
Source: (Own work, 2021)

A lane marker sensor is added to the model, 
representing the camera and image processing 
algorithm on the real vehicle, providing 
information about the lane lines present on 
the road as intersections between the lane 
lines and scan lines relative to the sensor.
The Fig. 3 below shows the Simulink 
environment. PreScan automatically creates 

the SELF, PathFollower, LandMarkerSensor 
a n d  D y n a m i c s _ S i m p l e  b l o c k s .  T h e 
TechnoDriversControl subsystem contains our 
custom control algorithms. So far, its input 
is the LaneMarkerSensor data and outputs the 
steering command, which is the input for the 
Dynamics_Simple block (Tass International, 
2021).

Fig. 3. 
The Created Simulink Environment
Source: (Own work, 2021)

The Fig. 4 below shows the implementation 
of a simple lane keeping model. Its inputs are 
data chosen from the LaneMakerData bus: 

DistanceFromScanCenter and SliceDistance for each 
scan line. This data is grouped as left lane X, left 
lane Y, right lane X and right lane Y coordinates.
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Fig. 4. 
Simple Lane keeping Model Implementation
Source: (Own work, 2021)

In a MATLAB function Eq. (1) and Eq. (2) 
fits a second order polynomial to the ly, lx, 
ry, rx data points with the polyfit() function 
that will represent the left lane, and also 
same for the right lane:

p_left = polyfit (ly, lx, 2) (1)

p_right = polyfit (ry, rx, 2) (2)

This step was made because the Simulink 
model in the real vehicle will receive a vector 
containing the coefficients of the polynomial 

curve detected by the camera and image 
processing algorithms and then evaluates the 
X values of the defined polynomials at the 
given Y values, which are determined by the 
scanning lines. It calculates an average error 
from the left and right X data and outputs it 
to the PID controller.

One lane marker sensor can only output the 
date of four scanning lines (see Fig. 5), we 
can use more of these lane marker sensors 
if a more accurate curve is needed, but it is 
good enough for our purposes now.

Fig. 5. 
Global State Machine, MathWorks Stateflow
Source: (Own work, 2021)
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Considering the global state machine, 
we use the Statef low’s Flow Chart state 
machine tool, where, based on input signals 
and conditions, the adequate output can 
be created. For example, if the camera 
recognizes a stop traffic sign, also seeing 
the line corresponding to it, then the vehicle 
must be stopped for 3 [s]. The logic in this 
sentence is the condition, the inputs are 
the stop sign and the line, the output is the 
control command (brake for 3 [s]).

3. Experimental Measurement and 
Testing

Besides testing our functions and algorithms in 
virtual environment and on publicly available 
datasets, we performed also experiments 
under real circumstances. For this purpose, 
we have built two measurement vehicle model 
platforms equipped with digital camera units, 
thus allowing us to test our algorithms under 
real circumstances in real-time. Here the 
calibration of sensors and that of the whole 
system is of key importance (BME, 2020).

Consequently, after the simulation phase 
we continue the exhaustive investigation 
with experimental testing the vehicle model 
platforms in different traffic situations, 
or with the so-called laboratory testing. 
Apart from the operation of components 
and different systems, it is also important to 
test reliability, durability and cyber security 
(Tollner et al., 2019).

Laboratory tests lead to much more relevant 
information of these propert ies than 

simulations. In our approach laboratory 
types for dedicated automotive testing can 
be categorized as follows:

• Technology research laboratory, where 
the basic research, the enhancement of 
existing and the development of new 
systems for autonomous vehicles is 
carried out, where the basic operation 
principles are being tested;

• Component analysis laboratory, or so-
called HIL (hardware-in-the-loop) labs, 
where a vehicle specific function can 
be tested and analyzed, like the video-
based environment perception, the 
challenge being to simulate the missing 
environmental conditions;

• System integration laboratory, where 
the cooperation can be tested between 
different systems, it is the half-way 
between the HIL and the VIL (vehicle-
in-the-loop) tests;

• VIL laboratory, where the complete 
vehicle is tested, necessary when the 
safety risk of the test is high, and the 
vehicle is not prepared enough for open 
road tests, the biggest challenge being 
to simulate the environment around the 
vehicle (Aradi et al., 2014).

3.1. Measurement Vehicle Model Platform

The initial hardware model consists of two 
Audi RS4 1:10 scale bodies, as well as their 
chassis. Further electronic components are 
detailed below, while the final form of these 
measurement vehicle models is presented 
in Fig. 6.
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Fig. 6. 
Body, Chassis and Electronic Components of the Final Vehicle Model Platforms
Source: (Own work, 2021)

Probably the most important component 
concerning the present study is the Raspberry 
Pi 4 Model B/4GB compact single-board 
microcomputer running on the vehicle’s 
battery. Used basically as a development 
board, this will handle the image processing 
and the control as well, so the performance 
limitations must be kept in mind.

Add it iona l ly,  a n ST M 32 Nucleo- 6 4 
development board will also be used for 
low-level control, placed right behind, and 
interconnected with the Raspberry Pi board.

The Raspberry Pi Camera Module v2 will 
basically be the measurement vehicle’s vision 
system, a high-quality 8-megapixel Sony 
IMX219 image sensor, custom designed 
add-on board for Raspberry Pi, featuring 
a fixed focus lens. It can take 3280x2464-
pixel static images, also supporting 1080p30, 
720p60 and 640x480p90 video with a 67 [°] 
view angle. It is attached to the single-board 
computer by the small sockets on the board’s 
upper surface, using dedicated CSi interface, 

designed especially for interfacing to cameras 
(Raspberry, 2021).

The measurement vehicle is powered by a 7.5 
[V] DC electric motor, being also equipped 
with a 4.8 - 6 [V] standard analogue servo 
for steering angle control during cornering. 
Alongside our DC motor we will use also a 
capacitive modular incremental encoder, 
which senses mechanical motion such as 
position, speed, distance, direction and it 
translates into electrical signals.

The necessary power to run the vehicle 
derives from modern LiPo (lithium-ion 
polymer) rechargeable battery packs (14.8 
[V], 3800 [mAh]), which do not only have a 
clearly higher capacity than NiMH or NiCd 
rechargeable battery packs, but they also 
have a considerably lower weight.

Besides the electric motor, two further 
important electronic components are needed 
as well. One is a MOSFET H-bridge motor 
driver, which enables bidirectional control 
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of the high-power DC brushed motor, 
supporting a wide 5.5 - 30 [V] voltage range, 
while delivering a continuous 15 [A]. The 
other is a DC-to-DC electric power converter, 
which enables conversion from one voltage 
level source DC to another, delivering it to 
sub-circuits, each with its own voltage level 
requirement different from that supplied by 
the battery (Conrad, 2021).

3.2. Environment Perception Algorithm

The model’s core element is the control 
software which must control the entire 
d r iv i ng c yc le process .  T h roug h t he 
development period traditional image 
processing methods were used, rather than 
more complex machine learning or deep 
learning algorithms like CNN. On one hand 
the implemented hardware does not really 
have the computational power to run such 
scripts, respectively; on the other hand the 
simplicity of the problem does not justify the 
implementation of such solutions. Python 3.x 
and OpenCV were used within the project.

The lane detection function plays a vital part 
in every autonomous car, but in the case of this 
project, it is even more important, being the 
only input from the environment. A robust 
lane detection algorithm provides reliable 
input for the control. There were implemented 
and tested a few methods explained below, in 
order to find the one that solves the present 
problem with the most success.

For the first try Hough Transform with 
Canny Edge Detection was used in order to 

detect the lane lines on publicly available test 
videos, and then we filtered and processed 
those lines, in order to determine which 
belongs to the left and right lane lines. Then 
the average slope was used, the highest point 
on the image, respectively the values from 
the previous frame to draw the lane lines on 
top of the original image (GitHub, 2017).

The algorithm worked fine and provided 
good results, however, it was only useful in 
straight lines, so it had to be implemented 
a method that was able to deal with curves 
as well (Chuan-En, 2018).

Thereafter, the Sliding Windows method 
based on Sobel operator was tried, containing 
six main parts:
• Using color transforms, gradients, etc. 

to create a threshold binary image;
• Applying a perspective transform to 

rectify binary image (“birds-eye view”);
• Detecting lane pixels and fit to find the 

lane boundary;
• Determining the curvature of the lane 

and vehicle position with respect to 
center;

• Warping the detected lane boundaries 
back onto the original image;

• Output v isual display of the lane 
boundaries, numerical estimation of 
lane curvature and vehicle position 
(Garv, 2020).

A window search takes a histogram of the 
lower half of the binary image, revealing 
the neighborhood where the lane lines begin 
(see Fig. 7).
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Fig. 7. 
Sliding Windows Method based on Sobel Operator, Polyfit Result
Source: (Own work, 2021)

After that, the image is split into horizontal 
slices, sliding a search window across each 
slice, finding areas of highest frequency. 
Once this is found for both left and right 
lanes, a second-order polynomial was 
performed with the polyfit() function, in 
order to get the best fit curve on the line. 
After that, this information was store in a 
Line() class for later use (Wong, 2017).

The method provided great results; however 
it is computationally expensive, so a more 
sustainable algorithm had to be found.

In order to reduce the performance needs 
of the algorithm, the edge detection was 
changed to Hough Transform with simple 

white thresholding. While on the control 
side it turned out that the second-order 
polynomial is not necessary, only errors and 
orientation of the vehicle had to be provided. 
The Sliding Window method never achieved 
more the 10 fps on the Raspberry Pi, so, even 
though it is a robust method, it could not be 
used, due to the issues related to the Hough 
Transform and the handling of the lines in 
Hough Space (García et al., 2019).

The different solutions, as well as their 
advantages and disadvantages are presented 
in Table 1. Based on the data collected in 
this table, the best solution can be easily 
identified, namely the Canny Edge Detection 
with Histogram Analysis.

Table 1 
Comparison among the Tested Lane Detection Algorithms

Lane Detection Algorithm Advantage Disadvantage
Hough Transform with
Canny Edge Detection

Appropriate working, 
good results Only useful in straight lines

Sliding Windows method
based on Sobel operator

Appropriate working 
in curves, straight lines High computational demand

Hough Transform with
white thresholding

Better filtering of 
the lighting Never achieved more than 10 fps

Canny Edge Detection
with Histogram Analysis Robust, fast and simple No issues
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This implementation is the combination 
of the simplest and most effective parts of 
the previous methods. The Canny Edge 
Detection had the best results in the pre-
processing segment, so it was decided to stick 
with it. It was also avoided fitting a second-
degree polynomial, because it requires a lot 
of hardware power; however, it provides 
almost nothing to the control, it is better 
to use that performance to calculate errors.

As far as the traffic-sign detection function is 
concerned, the goal is that the model vehicle 
to successfully detect and classify four types 
of traffic-signs - main/priority road, stop, 
pedestrian crossing and parking signs (Bosch 
Future Mobility, 2019).

Regarding the method to achieve this goal, 
the task is well defined, and the traffic sign 
pool is small, only four signs. Deep learning 

is a general and popular solution to this 
problem, however considering the processing 
power limitations, we decided not to take this 
path, rather to base the algorithm on color 
threshold, shape detection and classification.

The signs have quite different colors than 
their typical environment - red, yellow and 
such blue colors are not expected in the 
specified area of the maps. After masking 
the image with the specified threshold, 
morphological closing is performed with 
different types of structural elements (ellipse 
and rectangular) to decrease noise.

The perspective view presented below is still 
an important part of the script to provide an 
upper view and to avoid distortions. Line 
edges are fitted based on the vertical white 
line; histogram peaks for the linear fitting 
are shown under the camera image in Fig. 8.

Fig. 8. 
Real-time Camera Image of the Traffic Sign and Lane Detection Algorithms’ Output
Source: (Own work, 2021)
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The signs have different shapes, which can 
be found with contour searching. To avoid 
detecting small objects, most likely noise, 
a minimum arc length for the contour is 
set. The algorithm then classifies the found 
contours into typical shapes (triangle, 
rectangle, ellipse, circle, etc.), draws and 
collects them.

Based on the colors and shapes, some signs 
can be classified easily, the stop and main 
road signs are much different than the others. 
The two blue ones, park and pedestrian, 
are a bit harder to correctly classify with 
this method. To reduce the probability of 
false negative and false positive detection, 
bouncing counter is implemented. This helps 
us to provide more accurate information.

In order to overcome the issue of light-
sensit iv it y template matching can be 
implemented, in order to obtain higher 
certainty of the detected sign. To minimize 
the detection of other objects (noise), we will 
use the so-called region of interest method, 
and crop the image at the beginning of the 
processing. This also reduces the required 
processing power (Ramesh et al., 1995).

3.3. Vehicle Control System

Creating control models in Simulink is a very 
effective and simple way to handle complex 
equations. Simulink models are useful for the 
simulation of a system, however, if you want 
to implement your model as an embedded 
system, building of the model in a toolchain 
is needed, meaning that it has to be compiled 
to a corresponding language, for example 
C++, in order to run parallelly multiple codes 
and for development as well.

If the code is implemented on a single-board 
microcontroller, when setting the build 

process, the toolchain (board type) should 
be chosen as well as the code language, 
in this case GNU GCC R aspberr y Pi. 
Moreover, having enabled the “Package 
code and artifact” property, the system will 
generate the code in a compressed ZIP file 
format together with other files essential 
for compiling, belonging to the main code. 
The generated code will run and build 
automatically on the board.

The main goal of the communication 
strategy’s application is to send the adequate 
control signals from the Raspberry Pi to the 
STM32 Nucleo-64 board. As an overview, 
the Raspberry Pi is responsible for the high-
level computation (e.g., image processing, 
positioning and control), while the task of 
the STM32 Nucleo-64 is to control the DC 
motor and steering servo, based on control 
commands from the Raspberry Pi.

The connection between the two above-
mentioned microprocessors is a serial 
communication protocol, physically a 
cable. The messages in string format are 
responsible for the command transfer. There 
are a few types of messages and formats for 
different types of motion command, shown 
in Table 2.

These messages sent by Simulink are 
compiled in C++ code every 0.01 [s] (100 
[Hz]), writing data to the serial device, 
representing the serial communication. 
There is a hardware support package for 
Simulink that has to be used for constructing 
blocks, in order to send messages from a 
given serial port of Raspberry Pi (“/dev/
ttyACM0” serial write port in this case). 
The appropriate bit rate or baud rate (in 
[bits/s]) should be set on the other side 
(STM32 Nucleo-64) as well for a reliable 
communication between the two boards.
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Table 2 
Serial String Message Structure

Command Message Structure Variables Explanation

Move() #MCTL:%.2f;%.2f;;\r\n” Steering angle [°]
Velocity [PWM]

Responsible for simple
motion of vehicle

Brake() #BRAK:%2f;;\r\n” Steering angle [°] Braking command
Adjust steering angle

Spline() #SPLN:%d;%.2f;;\r\n
Logical value for direction of motion

Coefficient terms of quadratic polynomial
Duration time of motion

Movement of vehicle 
on polynomial trajectory

PID_active() #PIDA:%d;;\r\n” Logical value for activating PID controller
Velocity values in [m/s]

Command for activating 
PID controller

PID_setup() #PIDs:%.5f;%.5f;;\r\n Coefficient terms of PID controller  
(kp, ki, kd, tf)

PID parameter setup

Regarding the lane keeping f unct ion 
controller, a relatively simple, but performant 
solution was adopted. Thus, we created 
PID controller only with PD terms for the 
distance error. After that, we considered 
the heading error as well with another 
PD controller, resulting in a more stable 
movement of the vehicle in corners.

The other important component of the 
model’s control system is the global path 
planning and trajectory execution, a Python 

code that calculates a proper path for the 
vehicle model, based on start and desired 
end positions.

The given map is in graph format containing 
nodes with coordinates and edges that 
declare the connections between the nodes 
(see Fig. 9). Each node has a pink ID and blue 
edges, directed arrows. As a result, the given 
graph is a directed graph, meaning that there 
is only one option to move from a node to 
another connected one.

Fig. 9.
Digital Map with the Visualized Graph
Source: (Own work, 2021)
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Bec au se t he I Ds of  t he nodes w it h 
coordinates and the connection between 
the nodes are declared, in the code we need 
to make a database for the nodes and the 
edges, to be able to calculate a suitable path 
between desired positions.

The two main variable of the preprocessing 
par t is the graph itsel f on which the 
calculation is performed (path planning) 
and the direction matrix, which is for the 
specification of the turning possibilities at 
cross-sections (-1 for right turn, 1 for left 
turn and 0 for the straight motion).

The used path planning a lgor ithm is 
Dijkstra’s optimal shortest path algorithm. 
The output of this method is the IDs of the 
nodes in order of the path.

To get useful data some post-processing 
is needed. The coordinates of the nodes 
are assigned to the node IDs, the output 
matrix also containing the turning directions 
at cross-sections. At the end of the post-
processing phase is the calling of the function 
and the inputs, moreover, it is also possible to 
give intermediate node IDs for the algorithm, 
thus different paths can be planned than 
the shortest.

The solution/output of the given input, 
the coordinates assigned to the node IDs 
according to the planned path, can be seen 
projected on the map in graph format. If the 
vehicle is before a cross-section, the control 
system will be able to know the steering 
commands based on the output.

3.4. Robot Operating System

The ROS, or Robot Operating System, is a 
f lexible, open-source framework designed 

for writing robot software. ROS makes 
it easier to write transparent software, 
while providing libraries and tools to help 
developers to create robot applications. It 
provides, among others, device drivers, 
libraries, visualizers, message-passing, 
as well as package management (GitHub, 
2017).

The basic components of the system are the 
nodes. A node is a process that performs 
computation, it can be written in C++ or 
Python as well. Usually, a robot is going 
to have different nodes for every task, so it 
can be developed parallelly and it will result 
structured software architecture (Bosch 
Future Mobility, 2019).

The nodes can communicate with each 
other via topics. A topic is a named bus with 
a specified message type. Every node can 
publish messages to a topic, and subscribers 
can read them. Interfaces can be defined by 
using topics, thus replacing modules during 
testing phases.

The existing algorithms were moved to the 
ROS framework. The image processing node 
needed just some simple modifications: 
declaring the publisher/subscriber topics, 
refactoring the f low of the program. Since 
the controller is made in Simulink, the first 
step was to generate a C++ code from the 
model. A ROS wrapper was made for the 
generated code, so the model behind the 
ROS node can be changed without any 
inconvenience.

This way the ROS graph illustrated below by 
Fig. 10 could be obtained; all the scripts can 
communicate with each other and provide 
I/O states, thus creating a complete global 
communication system.
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Fig. 10.
The Implemented ROS Architecture
Source: (Own work, 2021)

There are two main nodes at the moment, one 
is the image processing node and the other 
is the controller node. They communicate 
via the /errorLateral topic and /laneStatus 
topic, which is the error signal for the lane 
keeping system. The Int32 message type is 
used from the std_msgs library.

There is one more node, which is used for 
tuning the parameters of the controller and 
image processing. This node communicates 
with the dedicated debug topics and uses 
Float32MultiArray or Int32MultiArray.

The parameter node contains some trackbars; 
Table 3 contains the parameter settings. 
After a trackbar callback, the changed values 
are published to the different topics and the 
controller and image processing node change 
the parameters accordingly. The trackbar 
names, upper-lower limits, default values 
can be changed. The values can be saved 
into a configuration file.

Built-in features for debugging are also used 
for monitoring the error/output signals of 
the controller or position tracking.

Table 3
Parameter Value Settings

Parameter Value, [-]
Proportional gain 49
Differential gain 14

Canny lower threshold 47
Canny upper threshold 151

4. Results and Discussion

The complexity of nowadays’ systems and 
the stochasticity of the potential traffic 
situations demand new approaches with 
different testing levels and approval layers. 

As a result of new components and increased 
in-vehicle system complexity, vehicle testing 
and validation became different as earlier. 
Testing the vehicle, the driver-controller and 
the traffic situations together require new 
testing methods and strategies, wherewith 
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development time and costs could be reduced 
drastically, while obtaining more testing 
data. The aim is the same as earlier, to 
guarantee road safety with reliable operation 
of the systems (Németh et al., 2019).

Throughout the present study two defining 
automated functions, lane detection and 
tracking, respectively traffic-sign detection 
were developed, tested and verified through 
driving cycles implemented on vehicle model 
platforms. The obtained results of the applied 
methodologies are summarized below as well:
• 1:10 vehicle model platform: RPi4 - image 

processing, positioning, control, STM32 
Nucleo - DC motor and power steering 
control, RPi v2 8MP Sony camera;

• Virtual simulation: PreScan v irtual 
environment, MATLAB polynomial 
curves, Simulink global state machine;

• Control system: Simulink PID, Dijkstra 
route and trajectory planning, ROS;

• Lane detection and tracking: Canny edge 
search, histogram analysis (Python, 
OpenCV);

• Traffic-sign recognition: color threshold, 
contour search, classification + template 
matching, ROI (Python, OpenCV);

• Testing, validation and verification through 
autonomous driving cycles.

In order to conclude the study, the authors 
hope that also new testing and validation 
methodologies can be based on the presented 
ideas and results, that further automated 
functions or even complex autonomous 
systems could be verified and validated with 
the help of such embedded systems.
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