
AUTONOMOUS DRIVING CYCLE MODELING, SIMULATION AND
VALIDATION ON 1:10 SCALE VEHICLE MODEL PLATFORMS

Csanád Ferencz1, Máté Zöldy2

1,2 Department of Automotive Technologies, Faculty of Transportation and Vehicle Engineering, Budapest
University of Technology and Economics, Stoczek J. u. 6., 1111 Budapest, Hungary

Received 4 May 2021; accepted 16 August 2021

Abstract: In the present research paper, the authors provided a comprehensive overview about
the R&D possibilities and processes in the field of autonomous vehicle testing and validation,
an exhaustive investigation concerning an autonomous vehicle driving cycle, by developing
not only camera-based traffic-sign and lane markings detection and tracking algorithms, but
also the implementation and simulation of these, as well as the verification and validation
procedures on 1:10 scale vehicle model platform, realizing and reproducing thus a complete
embedded system development life cycle.

Keywords: autonomous vehicles, traffic-sign detection, lane detection and tracking, testing,
validation.

2 Corresponding author: zoldy.mate@kjk.bme.hu

UDC: 629.3.014.9 DOI: http://dx.doi.org/10.7708/ijtte2021.11(4).06

1. Introduction

Today’s vehicles already have several driver
assistant systems and in the near future,
highly automated vehicles will also appear
in road transport. Higher automation levels
rely on disruptive technologies that cannot
be tested and approved in the former way. To
be able to guarantee future road safety also
disruptive testing and validation methods
are required (Szalay et al., 2017).

The present paper aims to present such a
method, specifically to validate and verify
a digital camera-based lane and traffic-sign
detection algorithm developed in virtual
environment, through experimental testing
in autonomous driving cycles, implemented
on 1:10 scale vehicle model platform as part
of an embedded system’s software.

As far as the methodology is concerned, 1:10
scale vehicle model platforms were modeled,
as well as a simulation was created in a virtual
simulation environment, followed by the
development of a digital camera-based
lane tracking and traffic-sign recognition
algorithm, then the experimental testing of
the created system in autonomous driving
cycles, concluded with the embedded system
software validation and verification.

2. Virtual Simulation Environment

In this section the PreScan simulation
environment and its connection to Simulink
is presented, besides a simple lane detection
and tracking algorithm.

Moreover, the implementation of a global
state machine in Simulink is shown as

565

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

well, necessary to realize both virtual and
experimental testing on the developed
system functionalities.

2.1. PreScan

PreScan is a simulation, development and
evaluation virtual software environment
within autonomous vehicles which can

actually see the surroundings in which they
are driving and can subsequently respond
to it. Fig. 1 below gives an impression of
the different engineering tasks and phases
carried out using PreScan: building a
relevant scenario, adding the appropriate
control systems, modeling the sensor system,
running the experiment (Ferencz and Zöldy,
2020).

Fig. 1.
Modeling with PreScan
Source: (Tass International, 2021)

For the purposes mentioned before, sensor
models containing real physical relationships
can be used, in order to design scenarios
based on real-life data. Once a certain
concept has qualified, PreScan can also be
used to check how robust it is under less
ideal circumstances, making it a great tool
for benchmarking various control system
concepts, as it is connected to MATLAB/
Simulink.

Generally speaking, PreScan truly adds
value when being used for concept studies,
where today’s typical task is to evaluate
different sensing systems or to evaluate
different sensor fusion concepts (e.g., if
radar with vision or radar with GPS would

be the preferred combined system). Within
PreScan all technologies and engineering
disciplines can be seamlessly integrated since
the prime interface is based on MathWorks’
MATLAB/Simulink.

2.2. Control Algorithm

PreScan helps us to develop, test and debug
our control algorithms prior to uploading
it to the actual vehicle. It would be a more
difficult and time-consuming task if we had
to test and debug our Simulink code in an
already compiled C++ form. Fig. 2 shows
the built virtual environment, essentially
the same as the one used later in the case of
vehicle model platforms.

566

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

Fig. 2.
The Built PreScan Virtual Environment with Lane Marker Sensor
Source: (Own work, 2021)

A lane marker sensor is added to the model,
representing the camera and image processing
algorithm on the real vehicle, providing
information about the lane lines present on
the road as intersections between the lane
lines and scan lines relative to the sensor.
The Fig. 3 below shows the Simulink
environment. PreScan automatically creates

the SELF, PathFollower, LandMarkerSensor
a n d D y n a m i c s _ S i m p l e b l o c k s . T h e
TechnoDriversControl subsystem contains our
custom control algorithms. So far, its input
is the LaneMarkerSensor data and outputs the
steering command, which is the input for the
Dynamics_Simple block (Tass International,
2021).

Fig. 3.
The Created Simulink Environment
Source: (Own work, 2021)

The Fig. 4 below shows the implementation
of a simple lane keeping model. Its inputs are
data chosen from the LaneMakerData bus:

DistanceFromScanCenter and SliceDistance for each
scan line. This data is grouped as left lane X, left
lane Y, right lane X and right lane Y coordinates.

567

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

Fig. 4.
Simple Lane keeping Model Implementation
Source: (Own work, 2021)

In a MATLAB function Eq. (1) and Eq. (2)
fits a second order polynomial to the ly, lx,
ry, rx data points with the polyfit() function
that will represent the left lane, and also
same for the right lane:

p_left = polyfit (ly, lx, 2) (1)

p_right = polyfit (ry, rx, 2) (2)

This step was made because the Simulink
model in the real vehicle will receive a vector
containing the coefficients of the polynomial

curve detected by the camera and image
processing algorithms and then evaluates the
X values of the defined polynomials at the
given Y values, which are determined by the
scanning lines. It calculates an average error
from the left and right X data and outputs it
to the PID controller.

One lane marker sensor can only output the
date of four scanning lines (see Fig. 5), we
can use more of these lane marker sensors
if a more accurate curve is needed, but it is
good enough for our purposes now.

Fig. 5.
Global State Machine, MathWorks Stateflow
Source: (Own work, 2021)

568

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

Considering the global state machine,
we use the Statef low’s Flow Chart state
machine tool, where, based on input signals
and conditions, the adequate output can
be created. For example, if the camera
recognizes a stop traffic sign, also seeing
the line corresponding to it, then the vehicle
must be stopped for 3 [s]. The logic in this
sentence is the condition, the inputs are
the stop sign and the line, the output is the
control command (brake for 3 [s]).

3. Experimental Measurement and
Testing

Besides testing our functions and algorithms in
virtual environment and on publicly available
datasets, we performed also experiments
under real circumstances. For this purpose,
we have built two measurement vehicle model
platforms equipped with digital camera units,
thus allowing us to test our algorithms under
real circumstances in real-time. Here the
calibration of sensors and that of the whole
system is of key importance (BME, 2020).

Consequently, after the simulation phase
we continue the exhaustive investigation
with experimental testing the vehicle model
platforms in different traffic situations,
or with the so-called laboratory testing.
Apart from the operation of components
and different systems, it is also important to
test reliability, durability and cyber security
(Tollner et al., 2019).

Laboratory tests lead to much more relevant
information of these propert ies than

simulations. In our approach laboratory
types for dedicated automotive testing can
be categorized as follows:

• Technology research laboratory, where
the basic research, the enhancement of
existing and the development of new
systems for autonomous vehicles is
carried out, where the basic operation
principles are being tested;

• Component analysis laboratory, or so-
called HIL (hardware-in-the-loop) labs,
where a vehicle specific function can
be tested and analyzed, like the video-
based environment perception, the
challenge being to simulate the missing
environmental conditions;

• System integration laboratory, where
the cooperation can be tested between
different systems, it is the half-way
between the HIL and the VIL (vehicle-
in-the-loop) tests;

• VIL laboratory, where the complete
vehicle is tested, necessary when the
safety risk of the test is high, and the
vehicle is not prepared enough for open
road tests, the biggest challenge being
to simulate the environment around the
vehicle (Aradi et al., 2014).

3.1. Measurement Vehicle Model Platform

The initial hardware model consists of two
Audi RS4 1:10 scale bodies, as well as their
chassis. Further electronic components are
detailed below, while the final form of these
measurement vehicle models is presented
in Fig. 6.

569

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

Fig. 6.
Body, Chassis and Electronic Components of the Final Vehicle Model Platforms
Source: (Own work, 2021)

Probably the most important component
concerning the present study is the Raspberry
Pi 4 Model B/4GB compact single-board
microcomputer running on the vehicle’s
battery. Used basically as a development
board, this will handle the image processing
and the control as well, so the performance
limitations must be kept in mind.

Add it iona l ly, a n ST M 32 Nucleo- 6 4
development board will also be used for
low-level control, placed right behind, and
interconnected with the Raspberry Pi board.

The Raspberry Pi Camera Module v2 will
basically be the measurement vehicle’s vision
system, a high-quality 8-megapixel Sony
IMX219 image sensor, custom designed
add-on board for Raspberry Pi, featuring
a fixed focus lens. It can take 3280x2464-
pixel static images, also supporting 1080p30,
720p60 and 640x480p90 video with a 67 [°]
view angle. It is attached to the single-board
computer by the small sockets on the board’s
upper surface, using dedicated CSi interface,

designed especially for interfacing to cameras
(Raspberry, 2021).

The measurement vehicle is powered by a 7.5
[V] DC electric motor, being also equipped
with a 4.8 - 6 [V] standard analogue servo
for steering angle control during cornering.
Alongside our DC motor we will use also a
capacitive modular incremental encoder,
which senses mechanical motion such as
position, speed, distance, direction and it
translates into electrical signals.

The necessary power to run the vehicle
derives from modern LiPo (lithium-ion
polymer) rechargeable battery packs (14.8
[V], 3800 [mAh]), which do not only have a
clearly higher capacity than NiMH or NiCd
rechargeable battery packs, but they also
have a considerably lower weight.

Besides the electric motor, two further
important electronic components are needed
as well. One is a MOSFET H-bridge motor
driver, which enables bidirectional control

570

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

of the high-power DC brushed motor,
supporting a wide 5.5 - 30 [V] voltage range,
while delivering a continuous 15 [A]. The
other is a DC-to-DC electric power converter,
which enables conversion from one voltage
level source DC to another, delivering it to
sub-circuits, each with its own voltage level
requirement different from that supplied by
the battery (Conrad, 2021).

3.2. Environment Perception Algorithm

The model’s core element is the control
software which must control the entire
d r iv i ng c yc le process . T h roug h t he
development period traditional image
processing methods were used, rather than
more complex machine learning or deep
learning algorithms like CNN. On one hand
the implemented hardware does not really
have the computational power to run such
scripts, respectively; on the other hand the
simplicity of the problem does not justify the
implementation of such solutions. Python 3.x
and OpenCV were used within the project.

The lane detection function plays a vital part
in every autonomous car, but in the case of this
project, it is even more important, being the
only input from the environment. A robust
lane detection algorithm provides reliable
input for the control. There were implemented
and tested a few methods explained below, in
order to find the one that solves the present
problem with the most success.

For the first try Hough Transform with
Canny Edge Detection was used in order to

detect the lane lines on publicly available test
videos, and then we filtered and processed
those lines, in order to determine which
belongs to the left and right lane lines. Then
the average slope was used, the highest point
on the image, respectively the values from
the previous frame to draw the lane lines on
top of the original image (GitHub, 2017).

The algorithm worked fine and provided
good results, however, it was only useful in
straight lines, so it had to be implemented
a method that was able to deal with curves
as well (Chuan-En, 2018).

Thereafter, the Sliding Windows method
based on Sobel operator was tried, containing
six main parts:
• Using color transforms, gradients, etc.

to create a threshold binary image;
• Applying a perspective transform to

rectify binary image (“birds-eye view”);
• Detecting lane pixels and fit to find the

lane boundary;
• Determining the curvature of the lane

and vehicle position with respect to
center;

• Warping the detected lane boundaries
back onto the original image;

• Output v isual display of the lane
boundaries, numerical estimation of
lane curvature and vehicle position
(Garv, 2020).

A window search takes a histogram of the
lower half of the binary image, revealing
the neighborhood where the lane lines begin
(see Fig. 7).

571

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

Fig. 7.
Sliding Windows Method based on Sobel Operator, Polyfit Result
Source: (Own work, 2021)

After that, the image is split into horizontal
slices, sliding a search window across each
slice, finding areas of highest frequency.
Once this is found for both left and right
lanes, a second-order polynomial was
performed with the polyfit() function, in
order to get the best fit curve on the line.
After that, this information was store in a
Line() class for later use (Wong, 2017).

The method provided great results; however
it is computationally expensive, so a more
sustainable algorithm had to be found.

In order to reduce the performance needs
of the algorithm, the edge detection was
changed to Hough Transform with simple

white thresholding. While on the control
side it turned out that the second-order
polynomial is not necessary, only errors and
orientation of the vehicle had to be provided.
The Sliding Window method never achieved
more the 10 fps on the Raspberry Pi, so, even
though it is a robust method, it could not be
used, due to the issues related to the Hough
Transform and the handling of the lines in
Hough Space (García et al., 2019).

The different solutions, as well as their
advantages and disadvantages are presented
in Table 1. Based on the data collected in
this table, the best solution can be easily
identified, namely the Canny Edge Detection
with Histogram Analysis.

Table 1
Comparison among the Tested Lane Detection Algorithms

Lane Detection Algorithm Advantage Disadvantage
Hough Transform with
Canny Edge Detection

Appropriate working,
good results Only useful in straight lines

Sliding Windows method
based on Sobel operator

Appropriate working
in curves, straight lines High computational demand

Hough Transform with
white thresholding

Better filtering of
the lighting Never achieved more than 10 fps

Canny Edge Detection
with Histogram Analysis Robust, fast and simple No issues

572

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

This implementation is the combination
of the simplest and most effective parts of
the previous methods. The Canny Edge
Detection had the best results in the pre-
processing segment, so it was decided to stick
with it. It was also avoided fitting a second-
degree polynomial, because it requires a lot
of hardware power; however, it provides
almost nothing to the control, it is better
to use that performance to calculate errors.

As far as the traffic-sign detection function is
concerned, the goal is that the model vehicle
to successfully detect and classify four types
of traffic-signs - main/priority road, stop,
pedestrian crossing and parking signs (Bosch
Future Mobility, 2019).

Regarding the method to achieve this goal,
the task is well defined, and the traffic sign
pool is small, only four signs. Deep learning

is a general and popular solution to this
problem, however considering the processing
power limitations, we decided not to take this
path, rather to base the algorithm on color
threshold, shape detection and classification.

The signs have quite different colors than
their typical environment - red, yellow and
such blue colors are not expected in the
specified area of the maps. After masking
the image with the specified threshold,
morphological closing is performed with
different types of structural elements (ellipse
and rectangular) to decrease noise.

The perspective view presented below is still
an important part of the script to provide an
upper view and to avoid distortions. Line
edges are fitted based on the vertical white
line; histogram peaks for the linear fitting
are shown under the camera image in Fig. 8.

Fig. 8.
Real-time Camera Image of the Traffic Sign and Lane Detection Algorithms’ Output
Source: (Own work, 2021)

573

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

The signs have different shapes, which can
be found with contour searching. To avoid
detecting small objects, most likely noise,
a minimum arc length for the contour is
set. The algorithm then classifies the found
contours into typical shapes (triangle,
rectangle, ellipse, circle, etc.), draws and
collects them.

Based on the colors and shapes, some signs
can be classified easily, the stop and main
road signs are much different than the others.
The two blue ones, park and pedestrian,
are a bit harder to correctly classify with
this method. To reduce the probability of
false negative and false positive detection,
bouncing counter is implemented. This helps
us to provide more accurate information.

In order to overcome the issue of light-
sensit iv it y template matching can be
implemented, in order to obtain higher
certainty of the detected sign. To minimize
the detection of other objects (noise), we will
use the so-called region of interest method,
and crop the image at the beginning of the
processing. This also reduces the required
processing power (Ramesh et al., 1995).

3.3. Vehicle Control System

Creating control models in Simulink is a very
effective and simple way to handle complex
equations. Simulink models are useful for the
simulation of a system, however, if you want
to implement your model as an embedded
system, building of the model in a toolchain
is needed, meaning that it has to be compiled
to a corresponding language, for example
C++, in order to run parallelly multiple codes
and for development as well.

If the code is implemented on a single-board
microcontroller, when setting the build

process, the toolchain (board type) should
be chosen as well as the code language,
in this case GNU GCC R aspberr y Pi.
Moreover, having enabled the “Package
code and artifact” property, the system will
generate the code in a compressed ZIP file
format together with other files essential
for compiling, belonging to the main code.
The generated code will run and build
automatically on the board.

The main goal of the communication
strategy’s application is to send the adequate
control signals from the Raspberry Pi to the
STM32 Nucleo-64 board. As an overview,
the Raspberry Pi is responsible for the high-
level computation (e.g., image processing,
positioning and control), while the task of
the STM32 Nucleo-64 is to control the DC
motor and steering servo, based on control
commands from the Raspberry Pi.

The connection between the two above-
mentioned microprocessors is a serial
communication protocol, physically a
cable. The messages in string format are
responsible for the command transfer. There
are a few types of messages and formats for
different types of motion command, shown
in Table 2.

These messages sent by Simulink are
compiled in C++ code every 0.01 [s] (100
[Hz]), writing data to the serial device,
representing the serial communication.
There is a hardware support package for
Simulink that has to be used for constructing
blocks, in order to send messages from a
given serial port of Raspberry Pi (“/dev/
ttyACM0” serial write port in this case).
The appropriate bit rate or baud rate (in
[bits/s]) should be set on the other side
(STM32 Nucleo-64) as well for a reliable
communication between the two boards.

574

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

Table 2
Serial String Message Structure

Command Message Structure Variables Explanation

Move() #MCTL:%.2f;%.2f;;\r\n” Steering angle [°]
Velocity [PWM]

Responsible for simple
motion of vehicle

Brake() #BRAK:%2f;;\r\n” Steering angle [°] Braking command
Adjust steering angle

Spline() #SPLN:%d;%.2f;;\r\n
Logical value for direction of motion

Coefficient terms of quadratic polynomial
Duration time of motion

Movement of vehicle
on polynomial trajectory

PID_active() #PIDA:%d;;\r\n” Logical value for activating PID controller
Velocity values in [m/s]

Command for activating
PID controller

PID_setup() #PIDs:%.5f;%.5f;;\r\n Coefficient terms of PID controller
(kp, ki, kd, tf)

PID parameter setup

Regarding the lane keeping f unct ion
controller, a relatively simple, but performant
solution was adopted. Thus, we created
PID controller only with PD terms for the
distance error. After that, we considered
the heading error as well with another
PD controller, resulting in a more stable
movement of the vehicle in corners.

The other important component of the
model’s control system is the global path
planning and trajectory execution, a Python

code that calculates a proper path for the
vehicle model, based on start and desired
end positions.

The given map is in graph format containing
nodes with coordinates and edges that
declare the connections between the nodes
(see Fig. 9). Each node has a pink ID and blue
edges, directed arrows. As a result, the given
graph is a directed graph, meaning that there
is only one option to move from a node to
another connected one.

Fig. 9.
Digital Map with the Visualized Graph
Source: (Own work, 2021)

575

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

Bec au se t he I Ds of t he nodes w it h
coordinates and the connection between
the nodes are declared, in the code we need
to make a database for the nodes and the
edges, to be able to calculate a suitable path
between desired positions.

The two main variable of the preprocessing
par t is the graph itsel f on which the
calculation is performed (path planning)
and the direction matrix, which is for the
specification of the turning possibilities at
cross-sections (-1 for right turn, 1 for left
turn and 0 for the straight motion).

The used path planning a lgor ithm is
Dijkstra’s optimal shortest path algorithm.
The output of this method is the IDs of the
nodes in order of the path.

To get useful data some post-processing
is needed. The coordinates of the nodes
are assigned to the node IDs, the output
matrix also containing the turning directions
at cross-sections. At the end of the post-
processing phase is the calling of the function
and the inputs, moreover, it is also possible to
give intermediate node IDs for the algorithm,
thus different paths can be planned than
the shortest.

The solution/output of the given input,
the coordinates assigned to the node IDs
according to the planned path, can be seen
projected on the map in graph format. If the
vehicle is before a cross-section, the control
system will be able to know the steering
commands based on the output.

3.4. Robot Operating System

The ROS, or Robot Operating System, is a
f lexible, open-source framework designed

for writing robot software. ROS makes
it easier to write transparent software,
while providing libraries and tools to help
developers to create robot applications. It
provides, among others, device drivers,
libraries, visualizers, message-passing,
as well as package management (GitHub,
2017).

The basic components of the system are the
nodes. A node is a process that performs
computation, it can be written in C++ or
Python as well. Usually, a robot is going
to have different nodes for every task, so it
can be developed parallelly and it will result
structured software architecture (Bosch
Future Mobility, 2019).

The nodes can communicate with each
other via topics. A topic is a named bus with
a specified message type. Every node can
publish messages to a topic, and subscribers
can read them. Interfaces can be defined by
using topics, thus replacing modules during
testing phases.

The existing algorithms were moved to the
ROS framework. The image processing node
needed just some simple modifications:
declaring the publisher/subscriber topics,
refactoring the f low of the program. Since
the controller is made in Simulink, the first
step was to generate a C++ code from the
model. A ROS wrapper was made for the
generated code, so the model behind the
ROS node can be changed without any
inconvenience.

This way the ROS graph illustrated below by
Fig. 10 could be obtained; all the scripts can
communicate with each other and provide
I/O states, thus creating a complete global
communication system.

576

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

Fig. 10.
The Implemented ROS Architecture
Source: (Own work, 2021)

There are two main nodes at the moment, one
is the image processing node and the other
is the controller node. They communicate
via the /errorLateral topic and /laneStatus
topic, which is the error signal for the lane
keeping system. The Int32 message type is
used from the std_msgs library.

There is one more node, which is used for
tuning the parameters of the controller and
image processing. This node communicates
with the dedicated debug topics and uses
Float32MultiArray or Int32MultiArray.

The parameter node contains some trackbars;
Table 3 contains the parameter settings.
After a trackbar callback, the changed values
are published to the different topics and the
controller and image processing node change
the parameters accordingly. The trackbar
names, upper-lower limits, default values
can be changed. The values can be saved
into a configuration file.

Built-in features for debugging are also used
for monitoring the error/output signals of
the controller or position tracking.

Table 3
Parameter Value Settings

Parameter Value, [-]
Proportional gain 49
Differential gain 14

Canny lower threshold 47
Canny upper threshold 151

4. Results and Discussion

The complexity of nowadays’ systems and
the stochasticity of the potential traffic
situations demand new approaches with
different testing levels and approval layers.

As a result of new components and increased
in-vehicle system complexity, vehicle testing
and validation became different as earlier.
Testing the vehicle, the driver-controller and
the traffic situations together require new
testing methods and strategies, wherewith

577

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

development time and costs could be reduced
drastically, while obtaining more testing
data. The aim is the same as earlier, to
guarantee road safety with reliable operation
of the systems (Németh et al., 2019).

Throughout the present study two defining
automated functions, lane detection and
tracking, respectively traffic-sign detection
were developed, tested and verified through
driving cycles implemented on vehicle model
platforms. The obtained results of the applied
methodologies are summarized below as well:
• 1:10 vehicle model platform: RPi4 - image

processing, positioning, control, STM32
Nucleo - DC motor and power steering
control, RPi v2 8MP Sony camera;

• Virtual simulation: PreScan v irtual
environment, MATLAB polynomial
curves, Simulink global state machine;

• Control system: Simulink PID, Dijkstra
route and trajectory planning, ROS;

• Lane detection and tracking: Canny edge
search, histogram analysis (Python,
OpenCV);

• Traffic-sign recognition: color threshold,
contour search, classification + template
matching, ROI (Python, OpenCV);

• Testing, validation and verification through
autonomous driving cycles.

In order to conclude the study, the authors
hope that also new testing and validation
methodologies can be based on the presented
ideas and results, that further automated
functions or even complex autonomous
systems could be verified and validated with
the help of such embedded systems.

Acknowledgements

Within the framework of the New Széchenyi
Plan, the project “Development of talent
management and researcher supply in the field

of autonomous vehicle control technologies
(EFOP-3.6.3-VEKOP-16-2017-00001)”
provided funding for the study. The research
was supported by the European Union and
co-financed by the European Social Fund.

References

Aradi, Sz.; Bécsi, T.; Gáspár, P. 2014. Experimental
Vehicle Development for Testing Autonomous Vehicle
Functions, In 2014 IEEE/ASME 10th International
Conference on Mechatronic and Embedded Systems and
Applications (M ESA), Senigal l ia, A ncona, Ita ly,
Sep. 10-12, 2014, pp. 1-5. https://doi.org/10.1109/
MESA.2014.6935534.

BME. 2021. BME Automated Drive Lab Research
& Development - Creating cutting-edge solutions
for tomorrow’s challenges. Available from Internet:
<https://www.automateddrive.bme.hu/research-
development>.

Bosch Future Mobility. 2019. The Challenge Competition
Regulations. Available from Internet: <https://www.
boschfuturemobility.com/wpcontent/uploads/2019/01/
BoschFutureMobilityChallenge_2019_Regulations.
pdf>.

Chuan-En, L. D. 2018. Build a lane detector. Available
from Internet: <https://towardsdatascience.com/
tutorial-build-a-lane-detector-679fd8953132>.

Conrad. 2021. Conrad Electronic Education &
Entwicklungskits. Available from Internet: <https://
www.conrad.de>.

Ferencz, Cs.; Zöldy, M. 2020. Simulation and validation
with radio-controlled (RC) autonomous vehicles in
roundabout situation [In Hungarian: Körforgalmi
szituáció szimulációja és validálása rádióvezérlésű (RC)
autonóm járművek segítségével]. In 28th International
Conference on Mechanical Engineering, April 25, 2020, online,
pp. 206-210. ISSN 2668-9685. Available from Internet:
https://ojs.emt.ro/index.php/oget2020/article/view/159.

578

International Journal for Traffic and Transport Engineering, 2021, 11(4): 565 - 579

García, L . et a l . 2019. Autonomous Driv ing in
Roundabout Maneuvers Using Reinforcement Learning
with Q-Learning, Electronics 8(12): 1536. https://doi.
org/10.3390/electronics8121536.

Garv, T. 2020. Self-Driving Car: Advanced Lane
Line Detection Udacity. Available from Internet:
<https://medium.com/@garvtambi05/self-driving-
car-advanced-lane-l ine-detect ion-udacit y-p2-
3745b3cc43e9>.

GitHub. 2017. The world’s leading software development
platform - GitHub. 2017. Lane Detection Using Hough
Transform. Available from Internet: <https://github.
com/karasuno7/Lane-Detection-using- Hough-
Transform>.

Németh, H. et a l. 2019. Proving Ground Test
Scenarios in Mixed Virtual and Real Environment
for Highly Automated Driving, In Proff H. Mobilität
in Zeiten der Veränderung - Springer Gabler, Wiesbaden,
Germany, pp. 198-210. https://doi.org/10.1007/978-
3-658-26107-8.

Ramesh, J.; Rangachar, K.; Brian, G. S. 1995. Machine
Vision, McGraw-Hill, Inc., USA. 549 p. ISBN 0-07-
032018-7.

Raspberry. 2021. Teach, Learn and Make with Raspberry
Pi. Raspberry Pi Products. Available from Internet:
<https://www.raspberrypi.org/>.

Szalay, Zs. et a l. 2017. Technical Specif ication
Methodology for an Automotive Proving Ground
Dedicated to Connected and Automated Vehicles,
Periodica Polytechnica Transportation Engineering, 45(3):
168-174. https://doi.org/10.3311/PPtr.10708.

Tass International. 2021. Tass International PreScan,
(8.4.0). Available from Internet: <https://tass.plm.
automation.siemens.com/prescan>.

Tollner, D.; Cao, H.; Zöldy, M. 2019. Artif icial
Intelligence Based Decision Making of Autonomous
Vehicles Before Entering Roundabout. In 2019 IEEE
19th International Symposium on Computational Intelligence
and Informatics and 7th IEEE International Conference on
Recent Achievements in Mechatronics, Automation, Computer
Sciences and Robotics (CINTI-MACRo), Budapest, Hungary,
Nov. 14-16, 2019, pp. 181-186, https://doi.org/10.1109/
CINTI-MACRo49179.2019.9105322.

Wong, C. 2017. Advanced Lane Finding Using Sliding
Window Search. Available from Internet: <https://
github.com/charleswongzx/Advanced-Lane-Lines>.

579

Ferencz C. et al. Autonomous Driving Cycle Modeling, Simulation and Validation on 1:10 Scale Vehicle Model Platforms

