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Abstract: Transportation is a fundamental tool to develop communities, cities, and countries 
on a larger scale, and more extensive transportation networks have developed ubiquitously. 
However, it is needed to consider the fact that animals also live in the same environment 
without using the same means, and there is always a chance of colliding with them while 
driving vehicles. Animal-Vehicle Collision (AVC) is a principal concern for transportation 
agencies and roadway hazards that influences human safety, property, and wildlife. State of 
Tennessee animal crash data has been collected for 23 years containing different types of 
information for each collision. This paper presents and evaluates the performance of five 
machine learning-based prediction models for animal collisions in the presence of both 
categorical and non-categorical features. These five models are developed using Logistic 
Regression, Random Forest, CatBoost, eXtreme Gradient Boosting (XGBoost), and Light 
Gradient Boosting Machine (LGBM). The CatBoost model has the highest accuracy level 
at 78.52%. Therefore, it seems to be the most suitable model to predict animal collisions 
based on 23-year data from Tennessee. The experimental results demonstrate the potential 
of leveraging categorical data with CatBoost as a viable solution for creating up-to-date and 
complete analysis for animal-vehicle collision data.

Keywords: animal-vehicle collision, machine learning, road safety, data analytics.

2 Corresponding author: Vahid.Balali@csulb.edu

UDC: 656.1.084
614.86

DOI: http://dx.doi.org/10.7708/ijtte2021.11(3).01

1. Introduction

A nimal-Vehicle Col l ision (AVC) is a 
principal concern for transportation agencies 
and roadway hazards that influences human 
safety, property, and wildlife. AVCs have an 
economic effect on individuals and public 
agencies, and especially in rural districts, 
they become challenging issues (Rodríguez-
Morales et al., 2013). Each year due to AVCs, 
there are 200 human deaths, 29,000 injuries, 

and $1.1 billion in property damage in the 
United States (Conn et al., 2004). Over 40 
types of mitigation measures aimed to reduce 
collisions with large ungulates have been 
described in (Hedlund et al., 2004; Huijser 
et al., 2007; Knapp et al., 2004). Examples 
of mitigation methods are to alert drivers 
of potential animal crossings by warning 
signs, wildlife warning reflectors or mirrors 
(Reeve and Anderson, 1993; Ujvari et al., 
1998), wildlife fences (Clevenger et al., 2001), 
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and animal detection systems (Huijser et 
al., 2006). Hence, exploring the various 
contributing factors that point to such 
collisions has become a necessity.

There are two strategies to lessen the 
numbers of AVC: 1) attempting to limit 
such crashes from the human end; and 2) 
restraining animals from becoming close 
enough to create crashes. The first type 
of mitigation can be conducted by having 
smart detective sensors on cars or by making 
drivers conscious of the likelihood of animal 
crossing areas. In a study by (Jeihani et al., 
2019), it has been revealed how people can 
be distracted while driving, which causes 
them to reduce their speed, change lanes, 
and deviate from the center of the road. In 
this case, keeping drivers focused on the 
road can play a significant role. In the second 
kind, there are multiple recommendations 
to keep animals off the roadways by fencing 
roads or constructing bridges on animal 
crossing routes. This second class of AVC 
reduction cannot be applied thoroughly to all 
highways and roads due to the high expenses 
of the method implementation. Moreover, 
the second method has shown less effective 
(Hedlund et al., 2004).

This paper is an upgrade of prev ious 
research (Moghaddam et al., 2020) that 
the contributing factors to the severity 
of animal-related crashes were identified 
using logistic classifier. The contribution 
of this study is to present and evaluate the 
performance of five machine learning-based 
prediction models of logistic regression, 
Random Forest, CatBoost, eXtreme Gradient 
Boosting (XGBoost), and Light Gradient 
Boosting Machine (LGBM) for animal 
collisions in the presence of both categorical 
and non-categorical features. By identifying 
these significant features and generating 

reliable prediction models, the number 
and severity of AVCs can recede from the 
human end. To achieve this purpose, the 
crash data are obtained from the Tennessee 
Department of Transportation (TDOT’s) 
TRIMS (Tennessee Roadway Information 
Management System) database. Out of all 
features of this data set, first, the most crucial 
ones are found to have enriched impacts 
on accidents. Then, those selected features 
are utilized in various machine learning 
techniques to generate prediction models. 
The essential elements and the most accurate 
machine learning model for predicting AVCs 
are presented.

2. Related Background

The animal and non-animal-related collision 
in the United States were compared by 
(Langley et al., 2006). The results showed that 
fatalities of nonanimal-related crashes stayed 
relatively stable with a 2.5% increase during 
1995 to 2004. However, animal-related 
events remain significantly high at 78%. The 
major distinctions were rural roads, darkness, 
roads less than 4-lanes, between 6:00 PM to 
6:00 AM, typical weather, and dry surface 
conditions. (Bartonička et al., 2018) studied 
AVCs data in the Czech Republic using the 
precise binomial method demonstrated about 
79% of AVCs occur at night. Furthermore, 
the study by (Haikonen and Summala, 2001) 
shows that the height of the sun above or 
below the horizon is a very active factor for 
AVCs. In the New South Wales of Australia, 
the most AVCs occurred on weekends (Ramp 
and Roger, 2008). They concluded that 
animals are the primary object of hit with a 
likelihood of 11.9%. About 81.7% of AVCs 
happened during fine weather conditions, 
and 86.7% of those AVCs had experienced 
a dry surface condition. (Hothorn et al., 
2012) investigated Deer-Vehicle Collisions 

342

Moghaddam K. et al. Evaluation of Multi-Class Multi-Label Machine Learning Methods to Identify the Contributing Factors to the Severity of Animal-Vehicle Collisions



(DVCs) in south-eastern Germany, initially 
for its type of roads to show that the number 
of DVCs is significantly affected by road 
length. (Lao et al., 2011) used the MP model 
of (Wang, 1998) and the Vehicle-Animal 
Interaction-based Probability (VAIP) model 
on three types of data that this model relates 
to the driver’s ineffective response and the 
leading vehicle’s presence. The results present 
that the probability of AVC is higher in rural 
areas than urban areas due to its population 
of animals, drivers’ ineffective response while 
driving at a speed of 50 mph or higher, and 
the high probability of male animals escaping 
from AVCs.

(Khalilikhah and Heaslip, 2017) studied 
how to improve the performance of animal 
crossing warning signs for mitigating the 
AVCs in the state of Utah. They defined 
and analyzed the traffic sign recognition 
distance to investigate whether the crashes 
happened within or out of that distance. 
Out of all the recorded crashes, 4.5% of 
accidents were related to animal collisions. 
Although it is believed that AVCs occur 
mostly in non-high functional classes of 
roadway systems, about 58% of the AVCs 
took place in the highest functional classes 
of roadway systems, which was generally 
considered to contribute towards AVCs. To 
determine whether AVCs occurred within 
or outside sign recognition distance, specific 
algorithms were developed to obtain the 
corresponding results. The study also wanted 
to find out the hotspots where the greatest 
number of AVCs took place. To find this, 
Kernel Density Estimation (KDE) technique 
using ArcGIS was implemented. Then, KDE 
was applied to the animal-vehicle collision 
data, and the regions with a higher likelihood 
of AVCs were found out so that necessary 
countermeasures could be implemented in 
such places.

(Ha and Shilling, 2018) studied the AVCs and 
its relationship with most important features 
such as environmental factors, human 
population density, and spatial patterns 
change among different taxonomic groups 
(e.g. medium mammals, small mammals, 
avian, and ungulate). The development of 
novel machine-learning Species Distribution 
Models (SDMs) such as Maxent that use 
presence-only data are potentially well-
suited for AVC modeling where non-linear 
relationships are likely, and many potential 
hotspots are possible. The Maxent model 
utilizes a deterministic machine learning 
algorithm to optimize environment-species 
connections based on maximum entropy 
and then projects those connections across 
geographic space to map other similar 
locations (Phillips et al., 2009; Phillips and 
Dudík, 2008). The study was conducted on 
three state highways in California. The data 
regarding the AVCs were obtained from the 
California Roadkill Observation System 
(CROS). From the National Land Cover 
Database (NLCD, USGS) and the National 
Elevation Dataset (NED, USGS), the land 
cover data of 2006, and the digital elevation 
of 2010 were extracted to use. A list of factors 
within environmental factors and human 
factors were considered for the Maxent 
modeling purpose, and the contribution of 
these variables to the model was analyzed. 
For ungulate carcass occurrences, there 
are four dominant factors, such as three 
environmental variables, total forest area, 
road density, and elevation. Similar to the 
ungulate AVC contributing factors, two 
environmental variables, total forest area 
and road density within 1640 ft buffer, were 
important contributing factors to the rest of 
taxonomic groups. The results obtained from 
this study showed that Maxent modeling 
could be used in situations where the factors 
being considered for the analysis might be 
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complicated and non-linear. Hence, utilizing 
machine-learning algorithms such as Maxent 
is ideally suited for such circumstances.

A variety of factors have high impacts on 
elevating the risk of AVCs. Another study 
conducted by (Grace et al., 2017) aimed to 
reduce AVCs by installing Roadside Animal 
Detection Systems (RADS) to assist drivers 
in making better decisions rather than 
attempting to keep animals off the road. In 
RADS, animals are detected using sensors, 
and this triggers signals on the roadside to 
f lash. Consequently, the driver is warned 
to be careful as animals are nearby. This 
study was implemented in Florida to see 
how good RADS performed over one year. 
By sampling throughout an entire year, they 
aimed to assess not only whether the RADS 
was successful at reducing driver speed, 
but whether or not its effect varied with a 
seasonal inf lux of tourists. To assess the 
effect of R ADS on driver speed, analysis 
of speed data was done using Analysis 
of Variance (ANOVA). The relationship 
between the speed of the participants in 
mile per hour (mph) and whether or not they 
crashed was modeled using binomial logistic 
regression in R. Their study concluded that 
RADS was useful to reduce the number of 
wildlife collisions, especially the collisions 
with Florida panthers. Also, they suggested 
that this system is far more effective when 
there is a higher risk for AVCs and more 
suitable when not used throughout the year 
to reduce acclimation to R ADS by local 
drivers.

Found and Boyce (2011)’s focus is on 
Deer-Vehicle Collision (DVC) based on 
the carcasses data from 2002 to 2007 
within and beyond the Edmonton City 
limits. They established definitions for 
hotspots and coldspots to narrow down 

their analysis locations to a reasonable 
number. Their roadside and landside-based 
models show different guides for predicting 
DVCs. Their landscape-based models that 
are based on location and frequency both 
prove that a higher speed limit has more 
probability of DVCs. The location-based 
landscape model demonstrates a higher 
risk of DVC where there are more forest 
and non-forest vegetation and where the 
interaction between the amount of forest 
and the distance to the nearest non-forest 
vegetation is decreasing. On the other side, 
the frequency-based landscape model also 
presents more chance of DVC where the 
distance to the most adjacent non-forest 
vegetation is shorter, the landscape is more 
heterogeneous, and the road density is lower.

Another study concluded by (Huijser et al., 
2009) compared the cost-benefit analysis 
of various mitigation measures aimed at 
reducing collisions with deer, mule deer, 
elk, and moose. They also addressed the 
importance of safe crossing options for 
animals by reviewing each mitigation 
measure. For their study, a cost-benefit 
analysis was conducted on 13 types of 
mitigation measures. Furthermore, they 
determined the cost of each mitigation 
measure over a 75-year per iod. They 
estimated the costs for the average collision 
with a deer, an elk, or a moose per kilometer 
per year for ten road sections in the US and 
Canada. The study concluded that the 
cost-benefit analysis was a beneficial tool, 
which can be utilized by transportation 
agencies when deciding which mitigation 
measure could be used to reduce AVCs. The 
study suggested that mitigation measures 
that include safe crossing opportunities 
for wildlife might not only substantially 
reduce road mortality, but also allow for 
wildlife movements across the road. This 
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connectivity is essential to the survival 
probability of the fragmented populations 
for some species in some regions.

To the best of our knowledge, there is not an 
analysis of the implementation of different 
machine learning techniques to evaluate and 
utilize AVC features that can demonstrate 
the most useful way of mitigation in the 
severity and numbers of such accidents. 
Hence, this paper implements and evaluates 
the performance of five machine learning-
based prediction models for in presence 
of both categorical and non-categorical 
features. These five models are Random 
Forest, Logistic Regression, CatBoost, 
XGBoost, and LGBM.

3. Method

In this research, as shown in Fig. 1, after 
cleaning a very large dataset, two methods 
are implemented to identif y the most 
critical features in AVCs, then five machine 

learning techniques are developed to create 
prediction models based on the essential 
features. Each AVC can have numerous 
features in the reports that usually are 
obtained from law enforcement agencies. 
Out of all recorded characteristics, only a 
few can contribute to building outstanding 
prediction models. Weight of Evidence 
(WOE) and Infor mat ion Va lue (I V) 
techniques are applied to distinguish the 
most appropriate features. After obtaining 
these characteristics, the provided TRIMS 
data from TDOT is used to create prediction 
models. These models are generated by 
employing Logistic Regression, Random 
Forest, XGBoost, CatBoost, and LGBM 
machine learning techniques. After models 
are generated, they will be assessed with the 
testing data that was not utilized previously 
in the training stage in order to find the 
factor of accuracy for each method. Based on 
the result of each method, a ranking system 
established to measure accuracy within each 
technique.

Data Process

Dataset

Weight of 
Evidence (WOE)

Information 
Value (IV)

Critical 
Features

Logistic 
Regression

Random 
Forest

CatBoost

XGBoost

LGBM

AVC
Contributing

Factors

Feature Selection

Prediction Models

Fig. 1.
An Overview of the Proposed Pipeline

3.1. Data Cleaning

In this very large-scale dataset with more 
than 100,000 AVCs collected over 20 years, 
some AVCs lacked features. Therefore, those 

AVCs missing information were removed 
from dataset and the number of items were 
reduced to 82,000. This cleaning was 
performed to make a strong dataset with 
appropriate and complete features. Then, 
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this set is being utilized in the following 
sections to first find the most powerful 
features for prediction, and next, featured 
AVCs are used in prediction models.

3.2. Features Selection

3.2.1. Principal Component Analysis and 
Support Vector Machine

Two techniques of Principal Component 
A nalysis (PCA) and Suppor t Vector 
Machine (SVM) are applied in this research. 
PCA is a statistical method to transform 
a set of features of possibly correlated 
variables into a set of values of linearly 
uncorrelated variables that practices an 
orthogonal transformation. PCA is used 
widely in many applications, mostly for 
eliminating noisy, less informative data 
before doing regression/classification. PCA 
is designed for continuous variables, and it 
works to minimize variance whereas our 
data contains categorical variables. The 
concept of squared deviations breaks down 
when there are binary variables. Therefore, 
even when this method converts the data to 
binary using one-hot encoding, it does not 
guarantee it will work properly and strongly. 
Support-Vector Machines (SVM) have 
supervised learning models with associated 
learning algorithms that analyze data used 
for classification and regression analysis. 
Even SVM would not have worked as it works 
on Euclidean distance, and the categorical 
features in our dataset are nominal in nature 
instead of ordinal (Bechra and Kazi, 2017).

3.2.2. Weight of Evidence and Information 
Value

The WOE indicates an independent variable 
concerning the dependent variable in the power 
of prediction. This method has emerged from 
the world of credit scoring, and it is considered 
as a measure of depicting the difference 
between good and bad independent (output) 
variables. WOE assists in transforming 
continuous independent variables into a set 
of bins or groups based on the similarity of 
dependent variable distribution, which can be 
categorized as the number of events and non-
events. There is no requirement for dummy 
variables because of this transformation 
that manipulates categorical features. WOE 
transformation accommodates to create a 
strictly linear relationship with log odds, and 
the value of it can be obtained from Eq. (1):

	 (1)

In continuation of the WOE, IV is to achieve 
a better result to understand the power of 
prediction in each feature in the dataset, 
and the value for IV is derived from Eq. (2):

	 (2)

By using IV based on the outcomes from 
WOE, a ranking table for variables can 
be imported based on their importance. 
This ranking demonstrates the ability of 
predictors for modeling. In Table 1, IV 
statistics are categorized for prediction 
liability (Bhala, 2015).

Table 1
Information Value Categories and the Feature Strength of Prediction

IV Value Feature Evaluation
0.3<IV<0.5 Robust
0.1<IV<0.3 Medium

0.02<IV<0.1 Weak
IV<0.02 or IV>0.5 Low
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3.3. Prediction Models

This section explains machine learning 
techniques that are executed for the 
prediction models of AVC.

3.3.1. Logistic Regression

In this section, the classifier model fits the 
effect of various independent variables on the 
dependent variable which is the probability 
of the crash resulting in a towed vehicle. 
The developed model finds whether each 
independent variable significantly affects the 
likelihood of the vehicle being towed or not. 
The Akaike Information Criterion (AIC) 
metric is used to measure the goodness of fit 
between the models. The modeling process 
starts with adding independent variables to 
the model and comparing the AIC of various 
models with each independent variable, the 
lower the AIC, the better the fit. The AIC 
assesses the goodness of the model’s fit with 
consideration of the number of variables (i.e., 
the degree of freedom) used in the model.

Using the logistic classif ier, the effects 
of different independent variables on the 
probability of vehicle being towed in the AVC 
are studied. It is assumed that if the vehicle 
is being towed, most likely the passengers 
are injured in the crash and it represents 
the severity of the incident. Thus, the 
effect of multiple attributes on the severity 
is investigated in this research. Although 
the logistic regression method makes no 
assumption for outliers, equal variances, and 
normality, there are independent assumptions 
and design considerations that apply to the 
method. Between popular choices of this 
method, the Gaussian Kernel is used (Kondor 
and Vert, 2004), which is formulated as follows:

	 (3)

W here y is the response value for the 
prediction value x. a, b, and c are relative 
features of the Gaussian curve as a maximum 
response, standard deviation (between 0 and 
1), and mean of the curve, respectively. Eq. 
(3) resembles a normal distribution where 
the coefficients should be the most accurate 
based on the goodness of fit feature. In order 
to achieve the precise coefficients Eqs. (4), 
(5), and (6) are utilized:

	 (4)

	 (5)

	 (6)

Where  is an independent variable that 
is taken into consideration, and  is the 
standard deviation that demonstrates the 
width of the Gaussian kernel distribution. 
N is the number of independent variables.

3.3.2. Random Forest

Random Forest was introduced by (Breiman, 
2001), and it implements the bagging method 
(Breiman, 1996) to ensemble decision 
trees. The main reason for selecting this 
approach is that categorical variables with 
many values are easier to deal with. Random 
Forest, in addition, provides handful internal 
estimates of error, correlation, and strength. 
It is faster than boosting/bagging and 
more uncomplicated and comfortable to 
parallelize.

In bagging, successive trees and earlier 
trees are independent, and the prediction 
is based on the majority vote. Random Forest 
is generated by growing trees depending 
on a random sample. Each tree results in an 
estimate of probability at the point that we 
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want to make a prediction and the mean of 
the probabilities is used for predicting. In 
another word, many trees grow to bootstrap 
samples, and then, the average is calculated 
and uses that average as the predictor. 
R a ndom Forest i s employed at each 
classification task, and it delivers accuracy 
that demonstrates high performance. This 
method is a refinement of bagged trees 
that improve on bagging by de-correlating 
the trees and reducing the variance. The 
essential steps to creating prediction models 
are as follow:
1.	 To select the training data set, the 

column sampling technique is used to 
grow the tree. The bootstrap is utilized 
due to the inability to use all samples fit 
into the tree growing.

2.	 The row sampling technique is used 
in order to select n features from all 
N features, and because of the Law of 
Large Numbers, they do not overfit.

3.	 Without any pruning, each tree in the 
forest grows thoroughly.

3.3.3. CatBoost

This section develops a model for AVC 
prediction using CatBoost technique. 
CatBoost is a gradient boost algorithm that 
uses machine learning to obtain robust 
predictions. Gradient boosting works by 
combining weak models to boost and improve 
them to robust models. Gradient boosting 
is a supervised method; this means it takes 
a set of labeled training instances as input. 
Then, it builds a model that the label of new 
unseen examples based on provided features 
can be correctly predicted. These robust 
predictions are derived from a combination 
of weaker models by greedily scoring these 
features. Created prediction models based on 
categorical features are not trustworthy in 

some cases, while CatBoost is primarily used 
for categorical features. These categorical 
features are a discrete set of values that 
are not necessarily comparable with each 
other but could be converted to numbers 
before training. The advantage of this 
machine learning technique is the ability to 
successfully handle categorical features and 
take advantage of them during the training 
time as opposed to pre-processing time.

In this method, the categorical features are 
converted to numerical values in order to be 
interpreted by the algorithm. Categorical 
features are dealt with during the processing 
time, and each category for every feature is 
substituted with one or several numerical 
values. Due to having a discrete set of 
values by categorical features, they are not 
comparable, and they cannot be used without 
having them in terms of numbers. There are 
different techniques for interpreting the 
data. One-hot encoding is the most common 
approach for low-cardinality categorical 
features, which is used in this section as 
a key element of having strong converted 
categorical features.

One-hot encoding presents categorical 
data expressively by having them in binary 
vectors. In this way, the number of exiting 
categories in that feature is counted; then, 
each category is numbered uniquely and 
sequentially. The highest number for each 
feature is used for producing binary vectors. 
In a vector, digit one is put in respect to the 
label number of the category, and the rest of 
the numbers are zeros. In this method, the 
number of exiting categories in the feature 
is counted; then, each category numbered 
uniquely and sequentially — the most 
number of categories for each feature used 
for producing binary vectors. In a vector, 
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digit one is put in respect to the label number 
of the category, and the rest of the numbers 
are zeros. That vector delivers the categorical 
feature but in terms of a numerical feature. 
As an illustration, the light conditions 

feature and the formed binary vector for each 
category are summarized in Table 2. In this 
feature, there are seven different categories, 
and the number of columns in the binary 
vector is seven.

Table 2
Different Categories of Light Conditions with Their Binary Vectors

Number Category Binary Vector
1 Day Light [1,0,0,0,0,0,0]
2 Dark-Not Lighted [0,1,0,0,0,0,0]
3 Dark-Lighted [0,0,1,0,0,0,0]
4 Dark-Unknown Lighting [0,0,0,1,0,0,0]
5 Dawn [0,0,0,0,1,0,0]
6 Dusk [0,0,0,0,0,1,0]
7 Other [0,0,0,0,0,0,1]

CatBoost provides some knobs to tune the 
predictions, and those parameters make 
the CatBoost classification more accurate 
and reliable. First, it starts to optimize the 
border count and leaf reg independently 
while iterations and learning rate should 
be searched together. CatBoost uses a novel 
schema for calculating leaf values which 
allows for many permutations without 
overfitting. A combination of two features 
is used to allow for new information to be 
obtained, and no information will be lost. 
On the other side, iterations have a linear 
relation with model overfitting which means 
higher numbers of iteration have a higher 
chance. However, due to our large dataset for 
training, it is difficult to have an overfitted 
model. At the last point, it tries to find the 
best depth for the decision tree-based model. 
Moreover, CatBoost adopts a greedy method 
when splitting trees. For the first split, no 
combinations are considered. For the second 
split, all combinations are combined and 
categorical features present in the current 
tree with all the categorical features in the 
dataset. Combination values are converted 

into numerical values by considering all 
the splits in the tree as categorical with two 
values and uses as combinations in the same 
way as categorical ones.

3.3.4. XGBoost (eXtreme Gradient 
Boosting)

XGBoost (eXtreme Gradient Boosting) is a 
gradient boost algorithm that uses sequential 
decision trees to enhance its efficiency (Chen 
and Guestrin, 2016) for fitting a prediction 
model. The two primary assets of XGBoost 
are execution speed and model performance. 
The algorithm starts with high bias and low 
variance, and by the end of improvement, 
it will have low bias. The method forms 
fixed-sized trees (same depth) based on the 
previous tree’s residual. Also, it scales all trees 
by the same amount. As this method builds 
another tree based on the errors made by the 
previous trees, this fashion will continue until 
the number of iterations is met, or additional 
trees fail to improve the fit. By the end of 
producing trees, all of them are scaled and 
will be used to make the prediction model.
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3.3.5. LGBM (Light Gradient Boosting 
Method)

This section explains another type of 
gradient boost decision tree that can be 
utilized for making a prediction model for 
the AVC dataset. LGBM is well known 
for its speed of model training process 
when it becomes a large-scale data (Ke et 
al., 2017). LGBM focuses on reducing the 
time consumption of regular gradient boost 
algorithm by using two novel techniques: 
(1) Gradient-based One-Side Sampling 
(GOSS); and (2) Exclusive Feature Bundling 
(EFB). These two techniques are to select a 
small size sample and fewer features from 
the data without impacting the accuracy of 
the overall classification. GOSS technique 
is to f ind the instances with a higher 
contribution to the information gain, and 
only randomly decline the ones with low 
contribution impact (low contribution to 
the information gain). For EFB, first, those 
mutually exclusive features are found and 
merged safely, and for other features (not 

mutually exclusive), they can be bundled 
by a greedy algorithm. By using these two 
innovative branches of science, the volume 
of data is deduced, and it assists the gradient 
boost to be applied in a shorter time with 
smaller memory for processing.

4. Case Study

The crash data were obtained from the 
Tennessee Department of Transportation 
(TDOT’s) TRIMS (Tennessee Roadway 
Information Management System) database 
(Moghaddam et al., 2020). The maintenance 
strategies within TDOT are directed at the 
region level, consisting of four administrative 
regions. Each region is subdivided into 
maintenance stations at the local level and 
has a carcass removal contract, different 
than others. Thus, we used the TDOT Risk 
Management crash data that is based on the 
accident reports filed by law enforcement 
officers. These crashes occurred in the years 
1994 to 2017 captured the features as shown 
in Table 3.

Table 3
All Features in Raw Data Set
Number of Tennesee County Number of Route log_mle Case Number

TDOT Location Date of Crash Time of Crash Type of Crash
Total Killed Total Injured Total Incapicitating Injured Total Other Injured

Total Vehicles First Harmful Event Weather Conditions Light Conditions
ID Number Reporting Agency Type GPS Coordinate Latitude GPS Coordinate Longitude

Vehilce Number Body Code Driver Factors Actions Driver Factors Condition
Vehicle Most Harmful Event Roadway Surface Conditions Trafficway Hazards Vehicle Body Type
Vehicle Going on Direction Driver Vehicle Maneuver Distraction Code Alcohol Involved

Areas of Vehicle Damage Driver Charges Driver Presence Driver Violations
Driver License Restriction Driver Residence Extent of Damage Fire in Vehicle

First Impact Point Number of Travel Lanes Officer Damage Estimate Registration State
Roadway Character Alignment Roadway Character Profile Roadway Route Signing Roadway Surface Type

Rollover Speed Limit Total Occupants Traffic Control Devision Function
Trafficway Flow Truck Bus Supplement Vehicle Color Vehicle Defects

Vehicle Going on Highway Vehicle Make Vehicle Model Vehicle Model Year
Vehicle Special Use Vehicle Towed Vehicle Trailer Event sequence
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Such data provide crucial information 
regarding crash severity, time of the crash, 
weather condition, vehicle age, vehicle speed, 
and type of animal involved in the accident. 
The recorded collision attributes include:
•	 Crash date and time (day, month, year, 

hour, and minute);
•	 Route name and direction;
•	 Roadway type (major, ramp, rest area, 

and turnaround);
•	 TDOT’s mile point;
•	 Crash Universal Transverse Mercator 

(UTM) coordinates;
•	 Crash severity (no injury/property 

d a m a g e ,  p o s s i b l e  i n j u r y,  n o n -
incapacitating injury, incapacitating 
injury, and fatal);

•	 Crash type (angle, front to rear, head-
on, sideswipe same/opposite direction, 
parked vehicle, rear to side, rear to rear, 
and single-vehicle);

•	 Driver age category (teenager, adult, 
senior);

•	 Driver condition (normal, aggressive, 
drowsy, distracted, and DUI);

•	 Weather condition (clear, cloudy, 
rainy, snowy, sleet/hail, fog/smog, and 
blowing sand/soil/dirt);

•	 Animal-related (yes and no) and animal 
type (wild and domestic);

•	 Number of vehicles involved in the crash;
•	 Roadway posted speed limit;
•	 Estimated vehicle speed.

First, the raw data are cleaned by removing 
crashes that do not have al l measured 
features. Then, a group of elements is selected 
based on their contribution to machine 
learning techniques that were discussed 
in the Method section. By finding the best 
parameters, the models are developed using 
80 percent of cleaned data for training. The 
final step of the generated models is to assess 
the testing data in order to produce results 
of prediction models.

There are assumptions and dividing criteria 
in each feature. Car age is calculated from 
two different features from the raw data, 
and it is conducted by subtracting the year 
of the crash from the model year of the 
car. As a result, each crash has its car age 
feature that allows comparing crashes of 
different years to each other. In addition, the 
feature of crash time is developed from two 
important features, the time of the crash in a 
day and the month of a year. The time zone 
dividing is defined in Table 3. Table 4 shows 
the selected parameters in the prediction 
models of CatBoost, XGBoost, and LGBM.

Table 4
Considered Time Zones of a Day in the Model

Zone Number Period within
Time Zone 1 12 AM to 3:59 AM
Time Zone 2 4 AM to 7:59 AM
Time Zone 3 8 AM to 11:59 AM
Time Zone 4 12 PM to 3:59 PM
Time Zone 5 4 PM to 7:59 PM
Time Zone 6 8 PM to 11:59 PM
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Table 5
Parameters for Different Models

CatBoost Model
Border Count Leaf Reg Iterations Learning Rate Depth

20 10 1800 0.08 7
XGBoost Model

Base Score No. Estimator Sub Sample Learning Rate Max Depth
0.5 100 1 0.1 3

LGBM Model
No. Leaves No. Estimator Sub Sample Learning Rate Max Depth

15 1000 0.9 0.1 1

5. Results and Discussions

5.1. Features Selection
Based on the IV ranking, as depicted in Table 5, a total of 16 features are considered for 
generating the prediction model.

Table 6
IV Ranking Table

No. Category Feature Name IV
1 Robust Roadway Surface Type 0.503
2 Robust Route 0.320
3 Medium Driver Actions 0.0299
4 Medium Weather Condition 0.0258
5 Medium Light Condition 0.0258
6 Medium Crash Month 0.0242
7 Medium Location 0.0129
8 Medium Time of Crash 0.0105
9 Weak Number of Travel Lanes 0.0087

10 Weak Driver Factors Actions 0.0051
11 Weak Driver Factors Condition 0.0031
12 Weak Roadway Surface Condition 0.0027
13 Low Body Code 0.0013
14 Low Car Age 0.0006
15 Low Driver Vehicle Maneuver 0.0003
16 Low Speed Limit 0.0001

Table 6 shows those 16 features and the label 
feature, vehicle towed, by organizing them 
in two types of categorical and numerical 
features. The label feature is categorical as 
a vehicle was towed or not. This table shows 
the selected features in this research in order 
to classify the crashes based on the label. 
The label for this matter is whether a vehicle 

has towed or not after the collision. In the 
case of the vehicle is towed, it is deemed a 
significant crash and high severity. Also, this 
categorical data has been added to our chosen 
features as it is the base of our models. It is 
important to note that the PCA method did 
not provide results as it showed some features 
important such as the ID number of a crash.
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Table 7
Selected Characteristics of AVCs Data

Type of Feature Feature Description

Numerical
Number of Travel Lanes
Speed Limit
Car Age

Categorical

Vehicle Towed
Time of Crash
Month of Crash
Driver Factors Actions
Driver Vehicle Maneuver
Driver Factors Condition
Driver Actions
Body Code
Location
Roadway Surface Type
Weather Condition
Light Condition
Roadway Surface Condition

5.2. Prediction Models

A fter cleaning data and creating new 
combi ned a nd ser v iceable feat u res , 
prediction models have been created. By 
using 20 percent of all in use collisions, the 
prediction models for each machine learning 
method is evaluated. The value for accuracy 
is calculated by Eq. (7). In this equation, 
TP, TN, FP, and FN are True-positive, True-
negative, False-positive, and False-negative 
respectively. The accuracy of each method is 

presented in Table 7. Even though CatBoost 
has the most prolonged duration to train 
the data, it is the most reliable technique 
in comparison to other methods. One of 
the most important reasons that make this 
method more concrete can be denoted as 
its high capability to confront categorical 
features. Moreover, Logistic Regression 
and XGBoost are second and third accurate 
techniques.

	 (7)

Table 7
Accuracy Comparison

Method Accuracy
Logistic Regression 73.93 %

Random Forest 71.05 %
CatBoost 78.52 %
XGBoost 73.74 %

LGBM 72.73 %

The confusion matrices for each method are 
shown in Fig. 2. According to our concern 
about predicting towed class collisions, the 

first three accurate methods are XGBoost, 
Logistic Regression, and LGBM, respectively. 
It means that if towed class collisions are 
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considered in the calculation of accuracy, 
the methods get values as shown in Table 
8. The difference between this accuracy 
and the model’s accuracy is summarized in 
considering just the towed class accidents. 
In another word, if the crashes that caused 

towing are separately investigated in the 
prediction models, it demonstrates how 
precise these models can forecast this 
category. In this case, XGBoost, Logistic 
Regression, and LGBM are the first three 
ranks for having accurate results of prediction.

(a) (b) (c)

(d) (e)

Fig. 2.
Confusion Matrices for Different Methods of (a) Random Forest; (b) Logistic Regression; (c) CatBoost; 
(d) XGBoost; and (e) LGBM.

Table 8
The Related Accuracy for Different Methods in Towed Class Prediction

Method Accuracy
Random Forest 87.97%

Logistic Regression 97.82%
CatBoost 95.89%
XGBoost 98.89%

LGBM 96.38%

The correlation between the explanatory 
and response variables shows that the vehicle 
age, road speed limit, time of crash (day or 
night), road surface condition (dry or wet), 
and alcohol involvement in the collision 
are relevant factors in severe crashes (i.e., 

passengers end up being injured). In this 
dataset, only 26 records were fatal crashes. 
However, 2,665 injury crashes (5.3%) were 
observed (Moghaddam et al., 2020). The 
frequency of crashes in the last six years is 
shown in Fig. 3.

Fig. 3.
AVC Frequency in the Last Six Years 
Source: (Moghaddam et al., 2020)
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The Precision-Recal l (PR) cur ves of 
developed models are depicted in Fig. 4. 
Precision (P) and Recall are determined 
by Eqs. (8) and (9) respectively. Average 
Precision (AP) as shown in Eq. (10) is 
considered the weighted mean of precisions 
achieved at each threshold. At the nth 

threshold, precision and recall are measured 
as Pn and Rn, respectively:

	 (8)

	 (9)

	 (10)

Fig. 4.
Precision-Recall Curves for All Methods Used
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ROC cur ve depicts the True Posit ive 
Rate (Towed vs. Towed) against the False 
Positive Rate (Not-Towed vs. Not-Towed) 
at various threshold settings. In Fig. 5, the 

Receiver Operative Characteristic (ROC) 
curve is representing the slight difference 
in the area (variance 2%) between different 
methods.

Fig. 5.
Receiver Operating Characteristic for all Methods Used

6. Conclusion

As the number of trips increases every 
day, the likelihood of accidents rises, and 
AVC becomes an immediate need to be 
considered. AVCs are concerned due to 
the massive amount of tolls on human, 
animal, and property damage. There are 
various sorts of mitigation to develop and 
lower the number and severity of animal-
related crashes. This study aims to overcome 
these collisions by predicting them based 
on existing conditions and circumstances. 
Based on this approach, by utilizing the road, 
weather, and car conditions, WOE & IV can 
present an adequate number of predictors for 
AVCs. The prediction models are developed 
by five different machine learning methods 
of R andom Forest, XGBoost, LGBM, 
CatBoost, and Logistic Regression. Then, 
by utilizing the most accurate machine 

learning techniques, CatBoost and Logistic 
Regression, a reliable prediction model can 
be developed. There are some limitations 
and weaknesses for CatBoost that can be 
concluded mostly in computational time. 
Also, this method converts the categorical 
features to numerical in order to have higher 
accuracy. After having a prediction model, 
it can be utilized to anticipate the time and 
place of AVCs. At the next step, there are 
some suggestions for road warning signs in 
case of a great possibility of a crash that can 
inform the drivers about it. On the other 
hand, car conditions such as age can warn 
the authorities for higher risk of AVCs. By 
combining all the information given to 
transportation agencies, they can choose the 
most useful approach based on their factors of 
decision making. The results of this research 
demonstrate the essential patterns that have 
a significant impact on this type of collision.
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