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Abstract: Urban congestion is getting worse, especially at intersections, where conflicting 
flows share the same traffic signal cycle. However, traffic demand-responsive control can 
improve urban traffic operations by directing vehicles to alternative routes with spare capacity. 
Intersection demand is characterized by left, through and right turning movement (TM) 
flows from each intersection approach. Information on TMs must be current and consistently 
reliable for traffic control strategies to be effective. Non-recurring traffic congestion can 
quickly and unpredictably develop, such as during the Christmas shopping season, causing 
backups and warranting congestion mitigation. The latest version of the Turning Movement 
Estimation in Real-Time (TMERT) model, TMERT3, can consistently estimate 5-minute 
TM flows from 15% of network flow detections. This paper validates TMERT3 by showing it 
robustly estimates TMs despite widespread detector failure when applied to non-recurrently 
congested extensive networks. TMERT3 is tested on traffic on the 28-intersection network 
in Orem/Provo, Utah, USA, during a Christmas shopping season.  TMERT3 TM estimates 
showed to preserve accuracy (Root Mean Square Error- RMSE) even when 20% of the initial 
detectors fail. So, TMERT3 presented practical applicability in efficiently guiding strategies 
that mitigate urban traffic congestion.
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1. Introduction

Traffic congestion occurs when traff ic 
demand approaches or exceeds the available 
roadway capacity, resulting in lower speeds, 
longer travel times, and increased queuing. 
Overall congestion is getting worse due to 
increased vehicle ownership and mobility. 
At this rate, around 20 million additional 
vehicles will use the US roads by 2025 (Vespa 

et al., 2020). Moreover, vehicle miles traveled 
are growing 1.1% annually (Leard et al., 
2019). So, each US commuter in 2025 will 
waste 14% more time, 19% more money, and 
9% more fuel than in 2017, due to increased 
congestion (Schrank et al., 2019).

Building infrastructure to accommodate 
the maximum demand is often impossible, 
expensive, or impractical as facilities can 
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remain vastly underutilized during the 
off-peak. However, traffic management 
strategies guided by reliable and timely 
traffic demand information can efficiently 
reduce congestion as it develops (NCHRP, 
2008). Spare capacity is a link capacity 
minus the corresponding traffic demand. 
A traffic control center can divert traffic from 
congested streets by guiding vehicles to spare 
capacity routes using variable message signs, 
traffic control signals, or in-vehicle devices.

Intersections are the main urban traffic system 
bottlenecks (Rao and Rao, 2012). Turning 
movement (TM) f lows, associated with 
different maneuvers made from an intersection 
approach, characterize the traffic demand 
at urban intersections. An intersection 
configuration dictates the turning options. 
For example, demand at a typical four-legged 
intersection is identified through twelve TM 
counts, as vehicles could proceed through or 
turn left or right from each approach.

Manual col lection of TM f lows is not 
feasible, especially when traffic demand 
is high. However, video image processors 
identify TM flows from intersection camera 
images by analyzing successive image 
frames’ changes (Yang and Pun-Cheng, 
2017). Vehicle occlusion, illumination, 
or weather can corrupt the reliability of 
recorded TM flows, but motion trajectories 
recorded through GPS or lasers supplement 
and improve the measurements (Shirazi 
and Morris, 2016). W hile video image 
detection can offer reliable TMs, many 
agencies lack the resources to deploy video 
to all intersections. So, comprehensive real-
time flow detectors are rare even at the most 
instrumented networks.

Agencies are often inclined to use the data 
already available to manage urban traffic 

congestion. Inductive loops are the USA’s 
primary sensors that measure traffic f low 
between intersections (mid-block traffic) 
(Gordon and Warren, 2005). Multiple 
intersection TM arrangements can explain 
a set of complete mid-block detections, so 
models estimate the most probable one. 
Estimation models are inexpensive and 
can closely match actual TM f lows from 
intersection stop-lines (Ghods and Fu, 2014; 
Riouali et al., 2019).

In reality, networks are rarely completely 
covered with detectors, seldom making 
TM est imates unrel iable (Lan, 2001; 
Tuydes-Yaman et al., 2015). TM estimates 
can improve when complementing sparse 
detections with historical data, such as 
turning ratios (Mirchandani et al., 2001), 
origin-destination matrix (Wu and Thnay, 
2001), joint trip distribution (Nakatsuji et 
al., 2004), or route choice (Chen et al., 2012).

Still, a model might be non-transferable 
and produce unreliable TM estimates when 
socio-economic characteristics change 
(Mozolin et al., 2000; Zhai and Ardian, 
2020). Also, these supplemental data are 
expensive and unavailable to most small 
agencies. So, agencies need a robust and 
inexpensive algorithm that can produce near 
real-time TM estimates from limited input 
and no historical data, such as TMERT.

1.1. Model Description

The Turning Movement Estimation in 
Real-Time (TMERT) model constraints 
the NETFLO algorithm to update TM 
f low estimates every 5 minutes from a 
mathematically represented network and a 
sparse set of mid-block detections (Martin, 
1997). A modeled network allows taking a 
successive road link (arc) at a node. Each 
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arc has an externally loaded node at both 
ends to account for vehicles entering and 
leaving the network borders or in-network 
parking lots. Taking an arc equates to driving 
through a road section or turning, and arcs 
differ through assigned constraints- weights 
and f low limits.  

The NETFLO algorithm (Kennington and 
Helgason, 1980) minimizes the total travel 
cost on a network, so the objective function is 
a sum-product of arc flows and weights (Eq. 
1). Three linear equations constrain f low 
generated at nodes and arcs. First, f lows are 
accounted for either at arcs or nodes at all 
times (Eq. 2). Second, the total node external 
loading is zero for a standalone network (Eq. 
3). Third, arc flows are within non-negative 
lower and upper bounds (Eq. 4).

 (1)

Subject to:

 (2)

 (3)

 (4)

Where: wj- weight per unit flow through arc 
j, xj- flow through arc j, lj – arc j lower bound, 
uj arc j upper bound, bi- external loading at 
node i, n- number of nodes, m- number of arcs.

Figure 1 presents arc types modeled in 
TMERT: detector (D), non-detector (ND), 
error (E), and TM. Detector arcs xj(D) 
are network links equipped with a mid-
block detector, while all other arc f lows 
are estimated. TM arc f low estimates are 
used in assessing the model and represent 
intersection left, through, and right turns.

ThroughDetector arc

Error arc (+)

Error arc (-)

Non-detector arc

Turning Movement (TM)
Arcs

Intersection
Approach

Node External
Loading

Fig. 1. 
Arc Types 

Arc f lows are positive integers ( ), 
constrained through a set of non-negative 
integer lower ( ) and positive-integer 
upper bounds ( ) and non-negative 
integer weights ( ). So, the cost of taking 
an arc is wj and flow estimates iterate within 
a preset range . Detected f lows match 
lower and upper bounds 
. This rigidity prevents the model from 

reaching a feasible solution ( ), but a pair 
of error arcs carrying imaginary flow permits 
the necessary f lexibility. Non-detector and 
TM arc upper bounds  are 
found based on estimate procedures from 
the Highway Capacity Manual (HCM, 2010). 

The base model, TM ERT, lacked the 
comprehensive constraint regime that would 
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yield TM estimates closely matching the 
observations from stop-lines. The three 
model versions: TMERT1, TMERT2, 
and TMERT3, improve TM estimates’ 
c on s i s t e nc y a nd a c c u r a c y  t h rou g h 

successively added model constraints. Each 
model version presented repeatability and 
transferability. Table 1 lists networks used 
in model calibration and validation for each 
model version. 

Table 1 
Calibration and Validation Networks Used in Modeling TMERT1, TMERT2, and TMERT3

Model Version Calibration Network
(# of modeled intersections)

Validation Network
(# of modeled intersections)

TMERT1 The Leicester, England (6) The San Luis Obispo, California (20)
TMERT2 The Theoretical Network (15) The Orem, Utah (11)
TMERT3 The Salt Lake City, Utah (8) The Orem, Utah (11)

TMERT1 restricted the error arc imaginary 
f low and increased the mean 5-minute 
coefficient of determination (R2) between 
TM estimates and observations on a real 
network by 20% (Martin, 1997). Error arc 
upper bounds were equal to one-fortieth 
of t he cor respond i ng detec ted f low 

, rounded up. So, for 400 
vehicles detected, corresponding error 
arcs could carry up to 10 unreal vehicles in 
each direction. Error arc f lows were further 
discouraged by weighting error arcs three 
times more than all the other arcs. In this 
way, the large “through” TM flows fit up to 
90% of observations, while small left and 
right TM estimates lacked reliability.

TM ERT2 applied the optimal weight 
constraints and produced a lower overall 
5-minute Root Mean Square Error RMSE 

(7 vehicles) than TMERT1 (10 vehicles) on 
the real network. (Karapetrovic and Martin, 
2020.) The optimal weights are: 35 to the left 

, 2 to the through 
, 28 to the right  TMs and 1 
to all other arcs .

The latest model version, TM ERT3, 
i mpo s e d t he op t i m a l  low e r  bou nd 
constraints, producing a lower overall 
5 -m i nut e  R M S E (5 v e h ic le s)  t h a n 
TMERT2 (7 vehicles) when applied to 
the rea l net work . (Karapetrov ic and 
Martin, 2021.) The optimal lower bound 
constra int reg ime enta i ls iterat ively 
lowering non-detector and TM arc lower 
bounds from three to reach feasibility 

.  Ta b l e  2 
summarizes the TMERT3 model version 
f low constraints for each arc type.
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Table 2 
TMERT3 Constraints

Arc Type Flow Lower Bound (lj) Upper Bound (uj) Weight (wj)

Detector

Non-detector
(HCM estimate procedure)

Error

TM
(HCM estimate procedure)

Added in: (1) TMERT1, (2) TMERT2, (3) TMERT3

1.2. The Research Need

Although shown to accurately estimate TM 
flows, the TMERT3 model version needs to 
present robustness to be practical. A robust 
model produces a similar predictive accuracy 
under changed assumptions. Extended 
validation tests TMERT3’s accuracy when 
three assumptions are combined: detectors 
massively fail, a network is non-recurrently 
congested, and a network is more extensive 
with a higher f low to capacity (v/c) ratio.

First, TMERT3 estimates TMs from 15% of 
network flows detected. Inductive loops have 
relatively high malfunction rates and can fail 
to detect mid-block flow (Martin et al., 2003). 
For example, a quarter of 15,000 detectors in 
New York State in the 1980s were inoperative 
at any given time (Bikowitz and Ross, 1985; 
Klein et al., 2006). Since then, the number 
of malfunctioning detectors decreased by 
enhanced installation techniques and vigilant 
inspection, but not eliminated (Klein et al., 
2006). Maintenance of inductive loops, placed 
underground, can be time-consuming. So, 
TM estimates can worsen due to an additional 
cut in the model input.

Second, all TMERT model versions always 
test peak hour traffic. However, peak hour 

traffic congestion is recurrent and generally 
predictable, so management strategies are 
often already established. Over half of the 
congestion is due to non-recurring events, 
such as traffic incidents, bad weather, work 
zones, or special events. (Rakha and Tawfik, 
2009.) Congestion due to non-recurring events 
is typically erratic, having an unpredictable 
location, duration, and consequences (CSI, 
2005). Therefore, the accuracy of TM 
estimates can deteriorate when traffic demand 
accumulates quickly and unexpectedly.

Third, TMERT3 has only been applied to 
small networks with a relatively low average 
network f low to capacity ratio (v/c). The 
largest network had 11 intersections with 
a v/c ratio of up to 30%. A more extensive, 
better-connected network offering more 
alternative routes could supplement the lack 
of mid-block detectors in estimating TMs 
with TMERT3. Moreover, TMERT3 is a 
quasi-dynamic estimator, so the demand 
during the modeling interval is constant but 
can change with the onset of the subsequent 
interval. Still, TMERT3 cannot model 
vehicles that remained in the network from 
the previous modeling interval. A high v/c 
rate can cause unstable traffic and queues 
formed at intersections, which can be 
impossible for TMERT3 to model.

446

Karapetrovic J. et al. Estimation of Intersection Turning Movement Flows with the TMERT3 Model Version: Sensitivity to a Widespread Detector Failure



1.3. Goal and Objectives

The goal is to va l idate the TM ERT3 
model’s robustness to a widespread mid-
block detector failure on a non-recurrently 
congested larger (over 20-intersection) urban 
network by showing it preserves predictive 
accuracy in estimating 5-minute TM flows 
from sparse detector data. The objectives 
addressing the goal are as follows:
• Examine predictive accuracy (Root Mean 

Square Error- RMSE) of TMERT3 in 
estimating 5-minute TM flows on a more 
extensive congested network when 15% 
of network flows are detected;

• Examine predictive accuracy (RMSE) 
of TMERT3 in estimating TM f lows 
on the same network using the same 
intervals when 20% of detectors fail, 
leaving 12% of network flows detected;

• Compa re t he overa l l  pred ic t ive 
accuracy of TMERT3 with 15% and 
12% of network flows detected through 
5-minute RMSE.

2. Methodology

The TMERT3 model ’s robustness to a 
widespread mid-block detector failure is 
tested on the Orem/Provo, Utah, USA 
network (Figure 2). Orem and Provo are 
adjacent cities, populated by about 100,000 
people each, and located 60 km south of Salt 
Lake City (US Census Bureau, 2020). The 
network holds a freeway, principal arterials, 
minor arterials, and urban collectors. 
800N bounds the study area in the north, 
University Parkway in the south, Geneva 
Road in the west, and University Avenue 
in the east.
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Fig. 2. 
Orem/Provo, Utah, USA Study Area 
Source: (Google Maps, 2020)
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The Orem/Provo network encompasses 
t w e n t y - e i g h t  4 - l e g g e d  s i g n a l i z e d 
intersections, with 304 nodes and 495 non-
error arcs. The network is modeled twice 
for two detector coverage (DC) settings. 
The first setting (DC1) models seventy-four 
f lows (15%) as detected, so 148 error arcs 
move the imaginary f low, forming 643 arcs 
in total. The second setting (DC2) removes 
the fifth of the detectors, leaving 58 network 
f lows detected (12%), 116 error arcs, and a 
total of 611 arcs.

Twelve 5-min periods (1:10- 2:10 p.m.) for 
Friday, December 21, 2018, capture non-
recurrent congestion due to the Christmas 
shopping season. The f low to capacity 
(v/c) ratio on the analyzed network is 41%, 
reaching 60%. Over 11% of the network is 
heavily congested, operating with a Level of 
Service either E or F. However, the remaining 
network arcs are potential alternative routes, 
with relatively stable traffic f low and spare 
capacity. The overall network is not over-
congested, as most of the formed queues clear 
by the end of a 5-minute modeling period.

The Automated Traffic Signal Performance 
Measures (ATSPM) website, hosted by 
the Utah Department of Transportation, 
provides 5-minute detector f lows, signal 
settings, external loadings, and TM counts 
(UDOT, 2020). Google Maps deliver lane 
counts, turning options, and intersection 
design needed for HCM capacity estimation 
equations. TM counts are used as ground 
truth when assessing the accuracy of TM 
estimates delivered with TMERT3.

The Root Mean Square Error (R MSE) 
measures the squared difference between 
modeled and observed TMs. Lower RMSE 
implies that TM estimates deviate less from 
the observations. (Walther and Moore, 
2005.) RMSE is convenient as it quantifies 
estimation error within the same scale 
(units) as a variable (Eq. 5).

 (5)

Where: yi - observed TM flow, ŷi - modeled 
TM flow, N- number of observations

Fewer detections require more f lows to 
be estimated, possibly decreasing the 
accuracy and consistency of estimates. So, 
the comparison between RMSE values for 
two detector coverage settings presents 
TMERT3’s robustness to a widespread 
detector failure.

3. Results

Calculated Root Mean Square Error (RMSE) 
between left, through, right, and overall 
TM estimates and the corresponding 
obser vat ions compared t wo detector 
coverage (DC) settings. The first setting 
(DC1) detected 15% of network arc f lows. 
The second sett ing (DC2) arbitrar i ly 
removed 20% of the detectors, leaving 
12% of network arc f lows known. Table 
3 shows R MSE calculated for both DC 
settings, accompanied by the mean, standard 
deviation (SD), minimum, and maximum 
values.
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Table 3
Calculated RMSE (veh.) for DC1 and DC2 for Left, through, Right, and Overall TMs

RMSE (veh.) Left Through Right Overall
Period DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2

1 25 25 33 34 17 18 26 27
2 31 31 35 35 19 20 29 29
3 27 27 35 36 15 16 27 28
4 29 29 34 34 17 18 28 28
5 29 29 37 37 19 19 29 29
6 30 31 37 36 22 22 30 30
7 21 21 27 26 13 14 21 21
8 20 21 27 26 14 14 21 21
9 19 19 25 25 12 14 19 20

10 25 25 31 31 16 17 25 25
11 27 28 34 34 17 18 27 27
12 29 30 31 31 17 19 26 27

Mean±SD 26±4 26±4 32±4 32±4 17±3 17±2 26±3 26±3
Min-Max 19-31 19-31 25-37 25-37 12-22 14-22 19-30 20-30

The mean RMSE was 26±4 vehicles for both 
DC settings, ranging from 19-31 vehicles for 
left TMs. Similarly, through TM estimate-
observation pairs yielded a mean RMSE 
of 32±4, ranging from 25-37, for both 
DC1 and DC2 settings. Right TMs were 
estimated with the mean RMSE of 17±3 
with a minimum of 12 and a maximum of 
22 for DC1. The detector removal produced 
sl ightly more consistent R MSE 17±2, 
ranging between 14 and 22. The mean 
RMSE for overall TMs was 26±3 for both 
DC settings. However, overall TMs were 
more consistently estimated when a fifth 
of the detectors fails, as the RMSE range 
narrowed from 19-30 to 20-30.

4. Discussion

The 28-intersection Orem/Provo, Utah 
network is used to test TMERT3’s accuracy 
in estimating twelve 5-minute TMs during 
non-recurrent congestion due to seasonal 
Christmas shopping. Initially, 15% of the 
network f lows are detected. Then, 20% of 
the initial detectors are removed, leaving 

less than 12% of network flows known. The 
Root Mean Square Error (RMSE) between 
observed and estimated TMs is calculated 
for two detector coverage settings and 
compared. The main research findings are 
as follows:
1. TMERT3 produces an overall 5-minute 

RMSE of 26 vehicles when applied to 
a real and more extensive congested 
network, with 15% of network f lows 
detected.

2. TMERT3 yields an overall 5-minute 
RMSE of 26 vehicles when applied to 
the same network over the same period 
when 12% of network flows are detected.

3. TMERT3 produces the same overall 
5-minute RMSE when 15% and 12% 
of network f lows are detected (26 
vehicles).

T herefore, t he resu lt s i nd icate t hat 
el im inat ing f low detectors does not 
diminish estimation accuracy. TMERT3 
has the same predictive accuracy (RMSE=26 
vehicles) when 15% and 12% of network 
f lows are detected when applied to the 
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urban congested, more extensive network, 
presenting robustness to a widespread 
detector failure.

TMERT3 consistently performs better 
when estimating dominant f lows. Almost 
all through TMs match the observations 
(RMSE=22, R2=95%) on a real network with 
20% of failed detectors. The mean 5-minute 
through TMs are 92, with a maximum of 
576. On the other hand, left and right TMs 
are small. Right TMs have a mean of 18, the 
maximum flow 138, and yield RMSE of 11 
and R2 of 30%. It is even worse for left turns, 
as RMSE is 15 and R2 is only 28%. The mean 
number of left-turning vehicles is 24, with a 
maximum of 132.

T he  a v e r a ge  ne t w o r k  i nt e r s e c t io n 
proportion is 18%:69%:13%, so typically, 
18% of vehicles turn left at the intersection 
approach and 13% turn right. Although 
more vehicles turn left than right, left turns 
are estimated less accurately. The reason 
for reduced estimation accuracy could be 
due to U-turning vehicles modeled as left 
TMs. So, turnaround vehicles can appear 
on the incorrect outf low link, causing f low 
disparity on the entire network. Left TMs 
estimation accuracy can significantly reduce 
with the increase in U-turns and the number 
of failed detectors. Figure 3 shows how TM 
observations and estimates compare during 
a typical observation period, from 1:55-2:00 
p.m.
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Fig. 3. 
Comparison of Estimated and Observed TM Flows for DC2 (the Orem/Provo, Utah Network, 1:55 
p.m.-2:00 p.m.)

Underestimating low flows can be attributed 
to changed driver behavior on congested 
streets, as more vehicles turn seeking 
alternative routes. A headway is smaller, 
allowing additional vehicles to turn during 
the same signal phase. However, TMERT3 
fails to increase its upper arc bounds to 
adapt to the changed driving regime. So, 
TMERT3 can falsely assign flow to through 
instead of to the left or right TM arcs due to 
rigid limits. As a result, left and right TMs 
can be underestimated and through TMs 
overestimated.

Although shown to accurately estimate 
TMs and be robust to a widespread detector 
failure, TMERT3 can be further examined 
and improved. Future work should express 
the acceptable detector failure rates as 
a function of the detector configuration 
and the detected f low. Also, TM upper 
bounds should be presented as a function 
of congestion to improve TM estimation 
accuracy.

The average network f low to capacity ratio 
(v/c) on the analyzed network is 41% and 
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up to 60%. The predictive accuracy of 
TMERT3 could decrease with the severity of 
congestion, as TMERT3 cannot model traffic 
extremely unstable or close to a breakdown 
for long periods. So, future research should 
identify the v/c ratio associated with a 
TMERT3 failure.

The research on the optimal size and shape 
of a modeled network should provide 
guidelines for using the TMERT3 model 
version in estimating intersection demand. 
Further study should simulate an incident 
to verify the effect of diverting traffic to 
TMERT3 -identified network routes with 
spare capacity and comparing TMERT3’s 
performance to other available low-cost 
operational treatments, such as remedial 
signal plan change. 

5. Conclusion

TMERT3 can instantly produce 5-minute 
T M est i mates a nd ident i f y fea s ible 
alternative routes on the congested network. 
Here, TMERT3 presented robustness 
to a widespread detector fa i lure on a 
congested, more extensive network (over 20 
intersections). So, TMERT3 can consistently 
provide traffic demand information, despite 
20% of net work mid-block detectors 
simultaneously failing. Therefore, TMERT3 
is applicable and efficient in minimizing 
traffic delays, vehicle operating expenses, 
and traveler frustration.
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