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Abstract: Because order picking is the most demanding, the most labor intensive and, 
accordingly, the costliest activity in a warehouse it has been potential for the optimization 
from different points of view and at different decision-making levels. In this research our goal 
was to examine a possible improvement of the order picking process by reducing the potential 
of the aisle congestion which is quite frequent in order picking systems with lots of pickers 
passing through same isles simultaneously. For that purpose, we give a quadratic mixed integer 
programming solution approach, as well as a Variable Neighborhood Search based heuristic 
algorithm solution approach. Beside that we employ a reduction-based strategy for reducing 
running times of the heuristic algorithms. Eventually, we tested the efficiency of developed 
models on an imaginary order picking system.
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1. Introduction 

According to de Koster et al. (2007) “order-
picking (OP) is the process of retrieving 
products from storage (or buffer) areas in 
response to a specific customer request”. 
Practically every aspect of the OP can be 
realized in numerous ways (e.g. man-to-
goods vs. goods-to-man, sequential vs. 
batched OP, random vs. zoned OP, etc.) 
so that every OP system is pretty much 
unique. For the deeper insight into the 
details of the OP we refer interested reader 
to Djurdjević (2019), Gu et al. (2010), Dallari 
et al. (2009), Hompel and Schmidt (2007) 
or Wascher (2004). Nevertheless, due to 
its simplicity and robustness, one of the 
most widely implemented OP technology 

is a sequential men-to-goods OP strategy 
within an OP area completely separated from 
the reserve storage zone, or as the lowest 
level(s) of the storage zone racks. This OP 
technology implies that every customer 
demand is fulfilled by one order-picker which 
goes between products locations within an 
OP area and picks up a required quantity 
of products. Order picker starts from the 
starting location and finishes and the end 
location which may be spatially separated. 
At the end location shipment is prepared 
(checked, consolidated, labeled etc.) for the 
next step in the delivery process. 

Because OP is the most demanding, the most 
labor intensive and accordingly the costliest 
activity in a warehouse, with the contribution 
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of around 50% in the warehouse operating 
costs (Frazelle, 2001), the OP process has 
been potential for the optimization from 
different points of view and at different 
decision-making levels. However, due to the 
limited space and numerous papers dealing 
with order picking related problems, for 
detailed overview of considered problems, 
used parameters and implemented solution 
techniques we direct interested reader to van 
Gils et al. (2018).

In this research our goal is to examine a 
possible OP improvement by reducing the 
aisle congestion problem which is frequent 
in OP systems with lots of order-pickers that 
passes through same isles at the same time. 
In the following section we give more details 
about the considered problem. In the Section 
3 we give mathematical formulation of the 
problem, as well as Variable Neighborhood 
Search based algorithms for solving it. 
In Section 4 we give settings and results 
of conducted numerical experiments. 
Eventually, in Section 5 we give overview 
of possible future directions of the problem.

2. Problem Description

In order to provide timely service, usually 
numerous order-pickers are engaged in the 
realization of the OP process. On the other 
side, warehouse space utilization implies 
that aisles are as narrow as it is imposed by 
technical features of the handling equipment. 
Consequentially, large number of pickers, 
that are moving within aisles at the same 
time, is causing congestion that eventually 
might signif icantly reduce overal l OP 
performances. In this research, situations 
that are considered as congestion from a 
picker’s perspective can be generally divided 

into two subcategories. The first one implies 
blockage of a picking location(s) due to an 
occupation by another picker with enough 
space in the aisle for passing that picker. This 
situation is showed on the Figure 1a where 
it can be seen that, due to the additional 
handling equipment used in the OP process, 
neighboring locations of the picking location 
may also be blocked. Depending on the 
location of the picking position and the 
size of the handling equipment, a number 
of blocked positions can be only one, in the 
case when location is at the beginning/end 
of an aisle and with the policy that handling 
equipment can be placed in the cross isle, or 
when the equipment size gives the possibility 
to be placed in such a way to block only one 
position. However, in the situation when 
equipment with the capacity of two pallets 
is used the number of blocked positions can 
go up to three. 

T he second categor y of con sidered 
congestion situation is given on the Figure 
1b and the Figure 1c where it can be seen 
that beside blockage of picking location, 
and its neighboring positions, due to the 
simultaneous ex istence of pickers on 
sufficiently close distance on both sides of 
an aisle, all downstream picking positions 
in an isle are blocked. 

One approach in avoiding beforementioned 
congestion situations is exploiting the 
dynamic nature of the OP process. This 
means that assignments of tasks to pickers 
is realized in such way that situations 
that lead to congestion are minimized by 
selecting appropriate OP tasks, routes, or 
moments in which pickers will start their 
routes. In the literature there are several 
studies that implemented this operational 
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level approaches in minimizing congestion. 
In that sense, for example Bataineh and 
K hasaw neh (2016) use taboo search 
metaheuristic algorithm to find the routes 
of order pickers with the goal to minimize 
a number of congestion of occurrences. 
However, authors by congestion consider 
only Pick-Face Blocking situation which 
occur if two, or more, pickers as interested 
in picking from the same picking location 
(i.e. within the same vertical bay).

However, operational level approaches are 
not the only way in which the congestion 
problem could be minimized. In that sense, in 
this research we propose an approach which 
utilizes a tactical level measure of reallocation 
of storage keeping units (SKU) over the OP 
zone based on the historical data about pickers 
delaying at SKUs’ locations. To the best of 
our knowledge this approach has not be 
used so far and together with the operational 
measures it could additionally reduce negative 
effects of the considered congestion problem. 
The main idea of the occasional reallocation 
of SKUs is to reduce the chance of congestion 
situations by optimizing locations of all SKUs. 
Namely, based on the congestion case from 
Figure 1a it is obvious that locating SKUs with 
high picker delay times next to each other 

will probably lead to frequent occurrences 
of situations which imply blocking of SKUs. 
Accordingly, SKUs should be allocated in 
such way that SKUs with long and short 
picker delay time are located alternately in 
an aisle. Moreover, since locating two SKUs 
with long picker delay times directly across 
one another in an aisle leads to frequent 
congestion situations form Figures 1b and 
1c, it is obvious that allocation of SKUs must 
be realized by simultaneous consideration 
of all SKUs’ picker delay times, i.e. not only 
on a side of the aisle in which an SKU is to 
be allocated, but also with the respect to the 
SKUs to be allocated on the opposite site of 
the aisle. Nevertheless, since SKU’s that are 
allocated on the opposite side of an isle and 
two positions from the considered location 
will not cause aisle blockage, but rather 
congestion situation given on the Figure 1a, 
we define the congestion zone for each picking 
location as in Figure 2. Accordingly, each 
congestion zone consists of the zone center, 
i.e. considered picking location, and zone 
members, i.e. neighboring locations of the 
picking location. Situations for the case of 
picking locations at the beginning/end of 
an aisle and in the middle of an aisle location 
are given on the Figure 2a, and Figure 2b, 
respectively. 

Fig.1.
Considered Congestion Situation 
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As a performance measure that is minimized in 
this research we use the sum of all congestion 
zone times whose number is equal to the 
number of picking locations. Congestion 
zone times are calculated as the sum of picker 
delay times for all members of the zone plus 
zone center. Common situation in warehouses 

is that building pillars are located within 
appropriate picking locations, meaning that 
no SKU can be allocated to such locations. 
Accordingly, such situation is handled by this 
allocation approach by straightforward pre-
allocation of dummy SKUs with zero picker 
delay time to such locations.

Fig.2.
Congestion Zone Examples

3. Solution Methods

The defined problem can be given in a graph 
form by representing picking locations as 
nodes of the graph which includes connection 
of neighborhood picking locations by arcs 
(Figure 2). It should be noted that in general 
sense by neighborhood picking locations we 
consider location which are one position up 
and down the moving direction on both sides 
of an aisle, as well as position directly across 
the considered congestion zone center (i.e. 
considered picking position). Accordingly, 
graph representat ion of the problem 
consists of P (P is the number of aisles in a 
warehouse) disconnected subgraphs where 
each subgraph represents picking locations 
in one warehouse aisle. Based on this graph 
representation of the problem we define two 
approaches for its solving.

3.1. Quadratic Mixed Integer 
Programming Model

Based on all previously said we define 
allocation model based on utilization of 
the classic formulation of the assignment 
problem. However, due to the nature of the 
performance measure we add additional 
set of constraints, and change the objective 
function which eventually changes its linear 
nature.

Sets:
L – set of all picking locations (l) within a 
warehouse
A - set of all SKUs, or articles (a), to be 
located in the L, L A=  
lz – set of congestion zone nodes for the node 
l (includes location l and all neighborhood 
locations) 
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Parameters
ta – expected picking time delay of the SKU 
a in the considered planning horizon. 
Decision variables: 

_

1 - SKU  is allocated at the location  
0 - otherwisea l

a l
x 

= 


cl - expected picker’s delay time in the 
congestion zone with the zone center l

By respecting all previous notations, the 
appropr iate Quadrat ic mi xed integer 
programming allocation model can be 
formulated as:

_min a l l
a A l L

x c
∈ ∈

⋅∑∑  
 (1)

Subject to:

_ n
n

z

l aa l
a Al l

c x t l L
∈∈

= ⋅ ∀ ∈∑∑  (2)

_ 1a l
a A

x l L
∈

= ∀ ∈∑   (3)

_ 1a l
l L

x a A
∈

= ∀ ∈∑  (4)

{ }_ 0,1a lx =   (5)

Objective function (1) minimizes the overall 
sum of pickers’ delay times in congestion 
zones. Constraint (2) defines values of 
the variable cl. Constraint sets (3) and (4) 
are usual assignment constraints related 
to allocation of SKUs to picking locations. 
Finally, constraints (5) define binary nature 
of the variable xa_l .

3.2. Variable Neighborhood Search based 
Approach

Regardless of the integrability property 
of the assignment problem, changes made 
in order to adopt the assignment problem 
to the considered problem, especially 
quadratic nature of the objective function, 
made this approach very inefficient for 
solving the problem. As it will be showed 
in the next Section solving time of not 
very large problems is inadmissibly long. 
Consequentially, in order to reduce the 
solving time of the problem, as well as 
to gain solution of better quality we 
developed a Variable Neighborhood Search 
(VNS) metaheuristic-based approach. 
V NS is a meta heu r ist ic f ra mework 
for developing heuristics a lgorithms 
(Hansen and Mladenović, 2014; Hansen 
and Mladenović, 2001; Mladenović and 
Hansen, 1997) for solving more specific 
problems. V NS have been intensively 
used in solving a variety of combinatorial 
optimization problems. It is based on 
straightforward facts that (1) a local 
optimum of one neighborhood structure 
does not have to be a local optimum of 
another neighborhood structure; (2) that 
a global optimum is a local optimum of all of 
the neighborhood structures; and (3) that, 
for many problems, the local optima of one, 
or several neighborhood structures are close 
to each other. Therefore, VNS is based on 
the systematic exploration of neighborhood 
structures of the current solution by 
performing the Variable Neighborhood 
Descent (VND) algorithm. The result of 
the VND execution is a local optimum in 
regard to considered neighborhoods. When 
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the VND results with solution improvement 
procedure is restarted with the improved 
solution in the center of the search. 

In the cases when VND does not result in 
solution improvement, chance of finding 
a global optimum is increased by making 
a random selection of the solution space 
regions within the neighborhood structures 
of the current best solution. The procedure of 

the random selection of the regions is called 
shaking, or perturbation. It is important 
to emphasize that the neighborhood 
structures used in the VND algorithm and 
in the shaking procedure can be, but it is not 
mandatory to be the same as in the case of 
the VND. The framework of the VNS used 
in this paper is based on the General VNS 
algorithm (given in Hansen and Mladenović, 
2014), and it is presented on Figure 3. 

Algorithm 1. Variable Neighborhood Search Algorithms
Initialization:  Set of neighborhood structures N' consists of the crossing 

structure; generate an initial solution x; stopping condition is 
defined by the parameter NoUnSrch.

While u<= NoUnSrch:
Shaking: non-nested variant nested variant

Generate a solution x’ by 
executing crossing move n 
successive times with x as the 
incumbent solution. 

Generate a new  solution x’ 
by executing crossing move 
on the existing x’.

Local search:   Apply the VND algorithm with x’ as initial solution. The 
obtained local optimum is marked as x”.

Move or not:   If x” is better than x, set x ← x” and u ← 1; otherwise, set u ← u +1
Fig.3. 
Implemented Variant of the General VNS

3.2.1. Solution Representation and an 
Initial Solution

Solution of the problem in the VNS is given 
as the allocation of products to storage 
locat ions. Accordingly, the object ive 
function of the problem is calculated by 
summing all zone picking delay times, where 
each zone delay time is obtained by adding 
expected time delays of the SKU allocated 
to the considered zone. 

Initial solution of the problem is composed 
of two sets of SKUs. The first one relates 
to the SKUs that are already present in the 
system and will be present in the system 
in the following planning period, while 
the second one relates to SKUs that were 

not in the system in the previous planning 
period but will be in the following period. 
Accordingly, in the initial solution the 
members of the first set are allocated to their 
existing locations, while members of the 
second set are allocated to the remaining 
locations in a random manner. 

3.2.2. Shaking Procedure

For the shaking phase of the VNS we used 
only one neighborhood structure, known 
in the literature as the crossing move. This 
move implies a random selection of two 
racks for SKUs exchange, where by a rack 
we consider all locations along one side of an 
aisle. Every exchange of SKUs is executed in 
such way that a random crossing location is 
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defined for both racks after which all SKUs 
from that point (including crossing location) 
to the beginning of the rack are exchanged 
between two included racks. In the case when 
number of locations within selected racks 

is not equal crossing location is bounded 
by the size of the shorter rack. Examples of 
the crossing moves for the cases of the same 
and different rack sizes are given on Figure 
4a and 4b, respectively. 

Fig.4. 
Crossing Move Implemented in the Shaking Procedure

Because of its importance in overcoming 
the problem of falling in the local optima 
finding an efficient shaking is very important 
for obtaining an efficient VNS algorithm. 
Therefore, besides “regular” shaking we 
considered nested shaking concept. Difference 
between nested and regular concepts is in the 
solution they use for generation of the new 
solution. In the regular shaking procedure 
new solutions are always generated with the 
incumbent solution as the starting solution, 
i.e. all changes are executed on the incumbent 
solution. On the other hand, nested concept 
implies that a  new solution is obtained by 
changing a solution obtained in the previous 
shaking procedure. Of course, in the first 
shaking procedure, as well as in all shaking 
procedures that follow the improvement of the 
incumbent solution in the local search phase 
of the VNS, nested procedure also considers 
the incumbent solution as a starting point for 
building new solution. Accordingly, two VNS 

algorithms are later tested and VNS algorithm 
with regular (non-nested) shaking is referred 
as nnVNS, while VNS algorithm with the 
nested concept is referred as the nVNS. 

3.2.3. Stopping Criteria
Shaking procedure is usually closely related 
with the stopping criteria of the V NS 
algorithm. Namely, if there is no time limit 
imposed to the algorithm, the algorithm 
stops after the sequence of local search 
algorithms, realized on shaking solutions, 
unsuccessful in finding an improvement 
of the incumbent solution. The length of 
the sequence is defined by the parameter 
NoUnSrch. The value of the parameter 
NoUnSrch is the subject of optimization 
since higher values should result in better 
solutions, but usually requires more time. 
In that sense, in the following section we 
tested the influence of the NoUnSrch on the 
nnVNS and nVNS performances. 
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3.2.4. Variable Neighborhood Descent 
Local Search Algorithm

According to Hansen and Mladenović 
(2014) in the basic case of the VNS after 
the shaking move some kind of local search 
heuristics has to be applied for the case of a 
deeper search of the solution space around 
the shaking output solution. In the case 
when Variable Neighborhood Descent 
(VND) algorithm is used as the local search 
algorithm the general case of the VNS is 
generated, which is the variant of the VNS 
we implemented. The VND solution we 
implemented in solving the considered 
problem is given on Figure 5.

Generally speaking, we used two moves for 
generating neighborhood structures, but 
since one or two storage locations from each 
included rack are moved, formally we used 
four neighborhood structures. Nevertheless, 
in the rest of this section we explain moves 
with two engaged storage locations, while in 
Figure 5 we show all four moves. Of course, 
moves with one storage location are intuitive. 

The first move that we used is well known 
Or-opt n move, where n denotes the number 
of storage locations included in the move. 
Or-opt move is well known from numerous 
combinatoria l optimization problems 
among which it is the most widely used for 
the optimization of vehicle routing class of 
problems. The main purpose of the Or-opt 
move is in the optimization of the service 
order of tasks on a resource. In the case of 
the considered problem the role of the Or-opt 
move is the optimization of the allocation 

of SKUs to storage locations within a rack. 
Namely, Or-opt 2 move implies that for a 
selected rack two neighboring SKUs are 
taken from the current al location and 
inserted on all possible locations in the 
remaining allocation structure (Figure 6a). 
Number of new solutions in the Or-opt n 
neighborhood structures is defined as (N-
n+1)(N-n) where N denotes the number of 
SKUs allocated in the considered rack.

The second move used in the V ND is 
also well-known move from numerous 
combinatoria l optimization problems 
where it is referenced either as the Exchange 
move, or as the Relocate move. From now 
on we refer it as the Exchange move. The 
purpose of the Exchange move is to optimize 
the solution of the problem related to the 
distribution of the tasks between resources. 
Analogously to the implementation of the 
Or-opt move, in the implementation of the 
exchange move resources are storage location 
of two considered racks while tasks are SKUs 
allocated in those racks. The Exchange 2 
move implies that new solution is generated 
in such way that two neighboring SKUs from 
one rack (r1) are selected and exchanged 
with two neighboring location from the 
second included rack (r2), as in Figure 
6b. Exchange neighborhood structure is 
generated by executing the Exchange move 
for all combinations of racks and all possible 
exchanges between SKUs in two included 
racks. If 

1r
N and 

2r
N denote numbers of SKUs 

in racks r1 and r2, respectively, and R denotes 
the number of racks in a warehouse, then the 
size of the Exchange structure with n SKUs 
is 

1 2
( ( 1) / 2) ( 1) ( 1)r rR R N n N n⋅ − ⋅ − + ⋅ − + .
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Algorithm 2. First Improvement VND Algorithm 
Initialization:     Set of neighborhood structures N" consists of Or-opt 2, Or-opt 1, Exchange 2 

and Exchange 1structures; x’ from shaking procedure is used as an initial solution, 
xloc_opt; OrCh set is initialized with the set of racks, R; ExCh set is initialized as 

{ }1 2 1 1 1 2( , ) , ,ExCh r r r R r R r r← ∈ ∈ ≠ .
Beginning:
l←2, impr←False;
While 1<=l<=2:
     While OrCh:
         By random select the next rack r from OrCh; { }\OrCh OrCh r←  

Select next neighbor x’’ from Or-opt l neighborhood with rack r.  
If x” is better then xloc_opt, set xloc_opt ←x”, l←2; impr←True, { }OrCh OrCh r← ∪ and   
go to the Beginning; 
If impr←False set l←1;

l←2, impr←False;
While 1<=l<=2:
     While ExCh:
         By random select the next pair of racks, (r1,r2) from ExrCh; { }1 2\ ( , )ExCh ExCh r r←  

Select next neighbor x’’ from Exchange l neighborhood for racks r1 and r2.  
If x” is better then xloc_opt, set xloc_opt ←x”, l←2, impr←True, { }1 2\ ,OrCh OrCh r r← ;

{ }{ } { }{ }{ }1 1 2 2\ , \ExCh ExCh r R r r R r← ∪ × × ; go to the Beginning;
    If impr←False set l←1;

Fig.5. 
Implemented Variant of the Variable Neighborhood Descent Algorithm 

Fig.6.
Or-opt n and Exchange n Moves used in the VND
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The order of implemented neighborhood 
structures in the VND is a very important 
aspect of the algorithm’s implementation 
and in the implemented VND we obeyed 
the rule that neighborhood structures are 
used according to their sizes. Therefore, the 
order of neighborhood structures is Or-opt 2, 
Or-opt 1, Exchange 2 and finally Exchange 1. 
However, it should be mentioned that before 
exploration of neighborhood structures we 
firstly select rack(s) on which structures will 
be implemented. More precisely, in the case 
of Exchange n structures we firstly select a 
pair of racks on which sequence of Exchange 
2 and Exchange 1 moves will be executed. In 
other words, we do not execute Exchange 2 
for all pairs of racks and then start with the 
Exchange 1 move, but we execute Exchange 
n moves on a selected pair of racks and then 
move to the next pair of racks.

Previously mentioned order of combining 
neighborhood structures and selected racks 
is of a vital role for implementing a reduction 
strategy for the VND. Namely, by a general 
rule each time VND finds an improved 
solution it is restarted (it begins after the 
initialization step) which means that it 
explores neighborhood structures all over 
again, even for the structures that it already 
checked and which had no changes since the 
improvement of the solution. For example, 
VND would explore the structure of a rack 
that is the same as in the previous solution, 
although it already explored it without 
finding better solution. Because, this strategy 
may require excessive running time we 
excluded such explorations from the VND by 
applying a reduction strategy. The strategy 
consists in maintaining two sets, OrCh and 
ExCh, required for tracking racks that are 
no checked for possible improvements. The 
OrCh set is initiated with all racks that are 

present in the system, while ExCh is initiated 
with all possible combination of pairs of racks 
without repetitions. Or-opt n and Exchange 
n moves are executed only for members of 
the appropriate set. Accordingly, when both 
sets are empty VND ends. 

However, each time an improved solution 
is found those sets are updated and new 
members are added. In the case when 
new solution is found in the Or-opt n 
neighborhood str ucture, the rack on 
whose allocation Or-opt move resulted 
in the improvement is added to the OrCh 
set, i.e. { }OrCh OrCh r← ∪ , and the VND is 
restarted. In the case of the improvement 
due to the Exchange move, beside a pair of 
racks included in the improvement move 
(r1, r2), we add to the ExCh all pairs of racks 
in which one pair member is r1 or r2, i.e. 

{ }{ } { }{ }{ }1 1 2 2\ , \ExCh ExCh r R r r R r← ∪ × × . Moreover, for 
the case of an improvement in the Exchange 
n neighborhood structure OrEx is updated 
by adding both racks included in the move 
which resulted with an improved solution, 
i.e. { }1 2\ ,OrCh OrCh r r← . 

Exploration of neighborhood structures in a 
VND can be realized in two possible ways. 
The first one is more time consuming since 
it implies that all neighborhood structure 
solutions are checked and that VND is 
restarted with the best-found solution as 
the new xloc_opt. Due to its comprehensiveness 
this exploration strategy is called the best 
improvement (BI) VND. On the other 
hand, there is a strategy called the first 
improvement (FI) strategy with implies 
restart of the VND with each founding 
of a new improved solution, i.e. with an 
improved xloc_opt. Since in the literature there 
are no guaranties that an implementation 
of the BI VND results in better quality of 

289

Bjelić N. et al. QMIP and Heuristic Approach in Solving Aisle Congestion Problem by Reallocating Goods Within an Order Picking Zone



solutions, and since it usually results with 
higher running times of the VND compared 
to the FI VND for solving the considered 
problem we implemented the FI variant of 
the VND.

4. Numerical Experiments

In order to test the efficiency of proposed 
solution methods we tested them on an 
imaginary typical OP zone layout consisting 
of 4 aisles and 23 picking location on each 
aisle side. Nevertheless, due to the existence 
of building pillars in 10 picking locations 

the overall number of picking locations, as 
well as SKUs is 174 (Figure 7). Additional 
features of the test instances include:
• E x pected picker delay t i mes a re 

generated within the interval of 14 and 
1200 seconds and are available upon the 
request to the corresponding author;

• NoUnSrch parameter of V NS based 
a lgor ithms is tested for va lues of  
1,5,10,15,20,25,30,35,40,45 and 50;

• Due to the randomness present in the 
realization of VNS based algorithms 
e a c h re a l i z at ion of  V NS ba s e d 
algorithms is repeated 10 times.

Fig.7. 
Testing OP zone Layout

Quadratic mixed integer programming 
model is solved by Gurobi 8.1 solver while 
the model is generated by using Gurobi’s 
Python API. All coding for realization of 
proposed VNS based algorithms is realized 
in the Python 3.6 programming language. All 
models are executed by the Intel i7 4712MX 
CPU with 12GB of RAM and Windows 8.1 
as OS.

Before we give overview of obtained results 
by applied solving approaches, we must 
emphasize that objective value of the initial 
solution is 169 586.44s. In the case when 
the quadratic mixed integer programming 

model was given an interval of 3600s for 
solving the problem it found the best solution 
with the objective function of 166 816.9s. In 
other words, it reduced the initial solution’s 
objective value for only 1.63%. In the case 
when available time interval for solving 
was increased to 24h the best solution 
obtained with the quadratic mixed integer 
programming model was 155227.27s, i.e. 
it improved the initial solution for 8.46%.

Results of the VNS based algorithms are 
given in the Table 1. in such way that the 
first column of the table contains value of the 
parameter NoUnSrch related to the number 
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of times shaking will be executed without 
the improvement of the incumbent solution 
it the VND. The following three columns 
contain the data related to the quality of 
obtained solutions by the implementation 
of the nnVNS algorithm, and the rest three 
columns for the nVNS algorithm. The second 
column contains information regarding the 
average value of obtained solutions given 
as the percentage average reduction of 
the value obtained with the QMIP model 
with 24h limit. The third column depicts 
the variation of the objective values of 
obtained solutions, given as a percentage 
of the obtained objective values. Finally, the 
third column depicts time requirements of 
the implemented algorithm.

It is noticeable from the data in Table 1 
that nnVNS obtained slightly better results 

regarding the value of the objective function 
for all values of the NoUnSrch. However, the 
nVNS obtained the best solution whose 
objective value was 97468.95s comperd to 
the nnVNS’s best solution with the objective 
value of 99243.41s. nVNS’s best solution 
was obtained for NoUnSrch value of 35 while 
nnVNS’s best solution is obtained for the 
parameter value of 45.

Regarding the time efficiency of algorithms, 
it  i s not iceable t hat nV NS requ i red 
significantly shorter period of time for 
finishing. The difference increases as the 
value of NoUnSrch increases. This implies 
that the number of VND realizations without 
an improvement, especially for small values 
of u, is lower in the case of nVNS, meaning 
that the nnVNS more depends on the value 
of the NoUnSrch parameter. 

Table 1
Results of the nnVNS and nVNS Algorithms 

NoUnSrch

nnVNS nVNS

Average 
Improvement of the 

QMIP Objective 
Value [%]

Standard 
Deviation of 

the Objective 
Function [%]

Average 
Running 
Time [s]

Average 
Improvement of the 

QMIP Objective 
Value [%]

Standard 
Deviation of 

the Objective 
Function [%]

Average 
Running 
Time [s]

1 24.44 2.67 85.15 23.83 0.93 83.36

5 25.23 3.08 120.24 25.01 4.71 112.76

10 25.89 5.30 161.96 25.20 2.82 130.44

15 26.01 4.64 198.16 25.31 4.02 133.02

20 26.34 5.14 208.18 26.39 4.95 139.45

25 26.64 4.99 227.70 26.35 5.18 158.86

30 27.42 4.43 262.75 26.92 6.31 161.03

35 28.22 6.09 283.72 27.30 5.93 178.86

40 28.71 7.15 294.96 27.21 4.89 179.24

45 28.85 6.41 336.03 28.33 6.33 200.33

50 28.87 5.79 387.67 28.35 6.28 219.05
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5. Conclusions

In this research we approached from the 
tactical level to solving the congestion 
problem in the order picking problem. 
Precisely, we considered re-optimization 
of periodical storage keeping units in such a 
way that situation which leads to congestion 
of pickers in ails are minimized. Although, 
the major improvement in congestion 
reduction lies in the scheduling of order 
pickers, allocation of goods over the order 
picking zone can also contribute the final 
goal. Two solution approaches that we 
introduced confirmed that. In the case of 
the Quadratic Mixed Integer modelling 
approach, we obtained a solution which was 
cca. 8% better than the initial one, while 
in the cases of Variable Neighborhood 
Search based algorithm approaches, we 
improved the init ia l solution for cca. 
28%. However, since order pick ing is 
very complex operation dependent on 
numerous aspects of the problem, it offers 
a wide variety of possible bringing of the 
problem to the realistic conditions. In that 
respect, our plans for further work on this 
problem include incorporation of additional 
parameters that have an inf luence on the 
pickers delay time at picking locations. 
Such parameters are frequencies of SKUs’ 
picking, weight of the picked units, etc. 
Besides that, since complexity of the problem 
is very high, especially for warehouses of 
several hundreds of locations in the order 
picking zones further improvement of the 
heuristic based solution methods is also the 
issue for the further work. Finally, based 
on the strong operational aspect of the 
order picking process it is reasonable that 
some kind of simulation-based models, for 
comparing effects of order picking process 
with and without implemented allocation 
optimization, should be also realized.
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