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Abstract: An integrated empirical Bayesian (EB) model based on crash-conflict safety 
performance function (SPF) as a prior is presented for estimating treatment effects at treated 
sites. This model has the advantage of accounting for changes in before and after factors not 
associated with the treatment, such as changes in volume and other site-specific attributes. 
The model also has the potential to reduce the need for large reference sites to develop the 
crash prediction safety performance function (SPF) in the EB formulation. The integration of 
traffic conflicts in EB before-and-after analysis can be achieved in two steps: 1) Develop a SPF 
to relate crashes to simulated conflicts for untreated (reference) sites, and 2) Simulate traffic 
at the treated sites with and without the treatment.  The former serves as the prior in the EB 
formulation, while the latter accounts for changes in conflicts resulting from the treatment 
being considered and serves as the EB data likelihood. To evaluate the proposed crash-conflict 
model, an EB before and after analysis was performed for a sample of treated signalized 
intersections from Toronto, Canada. The treatment being considered at these intersections 
is changing the priority of left turn signals from permissive to protected-permissive control. 
Treatment effect is obtained in terms of Crash Modification Factors (CMFs) for rear-end and 
left-turn opposing (LTOPP) simulated traffic conflicts. CMFs obtained from the proposed 
crash-conflict model were compared with estimates of CMF from a convention
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1. Introduction

Observational crash-based models have 
been t rad it iona l ly used to est i mate 
treatment effects in road safety studies. 
These models require the specification of a 
safety performance function (SPF) relating 
historical crash occurrence to selected site-
specific confounding factors, such as, traffic 
and road geometric attributes. The higher the 
number of confounding factors, the greater 
the number of sites that need to be considered 

to establish the SPF. The level of uncertainty 
associated with SPFs is represented by the 
underlying model variance for the expected 
number of crashes. It is worth noting that, 
SPF alone cannot not be used to estimate 
treatment effect because it cannot account for 
regression-to-the-mean (RTM) bias inherent 
in the observed crash data.

The most commonly accepted “observational” 
approach for estimating treatment effects 
and accounting for RTM bias is the empirical 
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Bayesian (EB) before-and-after approach 
(Hauer, 1997; Persaud and Lyon, 2007; etc.). 
RTM bias is accounted for in the EB approach 
by expressing the EB expected number of 
crashes at a given site as a weighted function 
of the:

1. Observed crashes at a given site; and
2. Predicted crashes for the site from the 

SPF. 

In order to get rel iable results for EB 
applications, a large sample of reference 
sites is needed (mostly untreated) from 
which to develop the underly ing SPF, 
which is considered costly and impractical 
(Lan, 2010). As noted above, the level 
of uncertainty associated with the SPF 
prediction at a given site is represented by the 
underlying model variance and the expected 
number of crashes at that site. In the EB 
model, this uncertainty (or crash variance) 
is accounted for formally in the weight factor 
used to ref lect confidence in the ability of 
the SPF expression to predict crashes at a 
given site. If the model is unreliable then 
more observational data is needed (i.e., more 
reference sites) to establish this SPF.

In the SPF function, the average annual 
daily traffic (AADT) is usually applied to 
ref lect exposure and often this volume is 
the only independent variable introduced 
in the model. For urban areas A ADT at 
intersections is not normally observed 
annually from counting stations, but is 
interpolated based on vehicles counts that 
are manually reported over shorter periods 
of time (usually 8 hours) and, this data 
collection is carried out every 2 to 6 years 
based on the importance of the intersection. 
In Toronto for example, 8-hour volumes 
are collected every 2 to 3 years at major 
intersections, and expansion factors are used 

to convert these hourly volumes to AADT 
(Tsoi, 2004). In addition, AADT is changing 
from year to year, which renders challenging 
our ability to account for annual volume 
changes in the resultant prediction models.

Recently, simulated vehicle interactions and 
traffic conf licts are used in traffic safety 
analysis, as surrogate safety measures instead 
of historical crash data. A conflict is observed 
when two or more vehicles approach each 
other, such that collision can take place if the 
vehicles trajectories unchanged (Amundsen 
and Hyden, 1977). The use of traffic conflicts 
in traffic safety analysis is based on that traffic 
conflicts can address some of the statistical 
issues associated with the rare random 
nature of crashes and reporting problems, 
especially for low severity crashes (Shahdah, 
2014; Shahdah et al., 2014). In addition, the 
transportation failure mechanism, using 
traffic conflicts, is considered from a broader 
causal perspective than from observational 
analysis (Shahdah et al., 2014; Brown, 1994; 
Sayed et al., 1994; Van der Horst, 1990).  

Microscopic traffic simulation platforms (e.g. 
VISSIM (PTV, 2012), SUMO (Lopez, 2018), 
AIMSUN (TSS, 2019) and PAR AMICS 
(Quadstone, 2019)) can be used in the 
estimation of vehicle interactions and hence 
traffic conflicts (Gettman and Head, 2003; 
Cunto and Saccomanno, 2008; Shahdah et 
al., 2014; Shahdah et al., 2015; etc.) 

The study introduced in this paper suggests 
that simulated traffic conflicts can be used 
in place of traff ic volumes to enhance 
the performance of EB before-and-after 
analysis for estimating treatment effects. 
The integration of traffic conflicts in the EB 
model also promises to resolve the problem 
of a large sample size required for reference 
sites in establishing the SPF.
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The integration of traffic conflicts into the 
EB before-and-after analysis can be achieved 
in two steps: 

1. Develop a SPF to relate crashes to 
simulated conf l icts for untreated 
(reference) sites. This serves as the prior 
in the EB formulation; 

2. Simulate the treated sites with and 
without treatment. This is used to 
account for changes in conf l ic ts 
resulting from treatment only and 
serves as the data likelihood in the EB 
formulation.

To evaluate the proposed method, a before 
and after EB analysis was performed for a 
sample of treated signalized intersections 
from Toronto, Canada. The treatment 
considered at these intersections is to change 
priority of left turn signals from permissive 
to protected-permissive. Treatment effects 
are expressed in terms of Crash Modification 
Factors (CMFs). In this study, CMFs are 
established separately for rear-end (RE) and 
left-turn opposing (LTOPP) crashes. CMFs 
obtained from the proposed crash-conflict 
model are compared with estimates of CMF 
obtained from a conventional EB before-
and-after analysis for the same treatments at 
the same intersections used in this research 
paper.

2. Traffic Conflict-Based EB Before-and-
After Procedure

In EB before-and-after analysis, CMF can be 

estimated in terms of the ratio (θ ) between 
the observed crashes in the after period (λ) 
with treatment, and the expected number of 
crashes in the after period had the treatment 
not been implemented (π) (Hauer, 1997), 
such that:

2
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where,

 θ = crash modification factor, 
λ = the observed crashes in the after 
period, and 
π = the expected crashes in the after 
period had the treatment not been 
implemented.

If the value of CMF (θ ) is less than one, the 
treatment is considered effective in reducing 
crashes, and vice versa.

Before estimating π, the expected crashes in 
the before period is obtained from the EB 
expression. The expected number of crashes 
is expressed simply as:

( )E(k ) 1 ( )i i i i im w w K= × + −  (3)

where, 

 mi = Expected number of crashes at site i,  
E(k i) = Expected crashes at site i 
estimated from SPFs,  
Ki = Observed crash counts at site i, and  
wi = Weight factor. 

The weight “w” is expressed as:
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1

1  ( )i
i
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E kϕ
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+ ×

 (4)

The term ö  in Equation (4) is referred to as the 
over-dispersion parameter for the underlying 
crash frequency distribution. The weight factor 
value ranges between 0 and 1. The lower the 
variance of prediction, the closer the weight 
factor is to a value of 1.0, and the greater the 
emphasis on the expected number of crashes 
from SPF function, and vice versa. 

A factor (Cr) is then applied to mi (Eq. 3) to 
account for different conditions between 
the before and the after periods. In the 
conventional EB approach, these changes 
are usual ly traf f ic volumes and other 
confounding factors. The factor Cr can 
be expressed as the ratio of the expected 
number of crashes in the after period and 
the expected number of crashes in the before 
period, as obtained from the SPF model. 

The expected number of crashes in the 
after period had the treatment not been 
implemented (π) can simply be estimated by 
multiplying the expected number of crashes 
in the before period (m) by the correction 
factor (Cr).

This paper takes the position that simulated 
traffic conflicts can be used in place of traffic 
volumes to enhance the performance of EB 
before-and-after analysis for estimating 
treatment effects. The integration of traffic 
conflicts in the EB model also promises to 
resolve the problem of a large sample size 
required for reference sites in establishing 
the SPF in the conventional EB before-and-
after analysis. The suggested SPF model 
used, in this paper, to estimate the expected 
crashes, is expressed in terms of the expected 
simulated conflicts, such that: 

( ) ( ) ( )i iLN C LN LN CFα β= +  (5)

where,

 Ci = the expected crashes at site i, 
CFi = the corresponding simulated 
conflicts at the same site i, 
LN = the natural logarithm, 
LN(α) = the model intercept, and 
β = Regression coefficient

This is in lieu of the conventional expression 
relating crashes to traf f ic volume. To 
represent the before period (i.e. condition 
without treatment), a sample of untreated 
sites can be simulated to obtain the average 
number of conflicts at each site. Then, the 
parameters in Equation (5) can be obtained 
using the generalized linear models (GLM) 
technique, by relating the observed number 
of crashes and the simulated conflicts at each 
site, to represent the before period. 

The calibrated parameters, from Equation 
(5), are then used to estimate the expected 
nu mber of  c ra shes at  t reated s ites . 
Furthermore, to estimate the expected 
number of crashes in the after period (π), 
at a certain site, the expected number of 
crashes in the before period (without 
treatment) is computed at the same site 
and then multiplied by a correction factor 
(Cr), similar to that for the conventional 
method. Usually the simulation conditions 
(e.g., traffic volumes, simulation parameters, 
driving behavior, etc.) will remain the same, 
except for the change due to the treatment, 
then this correction factor (Cr) can be 
estimated based on the change in simulated 
conflicts in the before and after, as follows:

a

b

CCr C=  (6)
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where,

  Cr = the correction factor 
between the before and the after 
periods; 
Ca = number of conflicts in the 
after period (with treatment); 
and 
Cb = number of conflicts in 
the before period (without 
treatment).

The correction factor “Cr” (in Eq. 6) can 
be viewed as a modification factor from the 
application of the simulation alone, based 
on the simulated conflicts in the before and 
the after (i.e. with and without treatment). 

If we assume that volume and other factors 
remain constant in the before-and-after 
periods, we can expect that the only change 
in simulated conflicts and crashes take place 
as a result of treatment. The value of π is 
obtained by summing over all sites in the 
treatment group (πsum) and compared with 
the observed number of crashes in the after 
period (λ sum). In addition, the variance 
of π is also summed over all treated sites. 
The combined CMF at all sites is obtained 
by replacing λ and π in Equations (3) and 
(4) with their respective summations. For 
more details on the EB before-after analysis 
method for estimating a CMF, the reader is 
advised to read the Highway Safety Manual 
(AASHTO, 2010), and (Hauer, 1997).

3. Data Description

The data used in this study contains two 
samples of signalized intersections from 
Toronto, Canada. Sample 1 consists of 53 
untreated reference intersections used to 
establish the SPF. Sample 2 consists of 47 
treated intersections used to compare the 

conventional EB before-and-after treatment 
effect with the proposed crash-conf lict 
formulation, as introduced in this paper. As 
noted above, the treatment implemented at 
the 47 sites reflects a change in left turn (LT) 
signal priority for a single approach from 
permissive to protected-permissive control.

The intersect ion traf f ic volumes and 
observed crashes are available from the 
Toronto Traf f ic Management Center. 
Observed crashes were available for the 
period from 1999 to 2007. The AM/PM 
peak hour traffic volumes and pedestrian 
counts for both the major and minor 
approaches were also available along with the 
intersections geometry. In addition, signal 
timing information, for all the untreated and 
treated intersections with and without LT 
signal priority treatment, were also available. 
Intersection geometry along with traffic 
volume and pedestrian counts were used as 
inputs into the simulation model.

4. Simulation of Traffic Conflicts

To use traffic conf licts in safety analysis, 
a surrogate safety indicators needs to be 
identif ied based on individual vehicle 
interactions. When vehicle interactions 
exceed a specified degree of risk, they are 
referred to as “traffic conf licts”. Many 
surrogate safety measures (i.e. traf f ic 
conf lict) expressions, such as Time-to-
collision (TTC), Deceleration rate required 
to avoid crash (DR AC), etc. have been 
described in the literature (Gettman and 
Head, 2003; Archer, 2005, Cunto, 2008 
and Cunto and Saccomanno, 2008). In this 
research study, Time-to-Collision (TTC) 
is used to reflect vehicle interactions. TTC 
can be expressed as the time required for 
two vehicles to crash if they continue on 
the same path and driving at their current 
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speeds (Hayward, 1972).

The 53 untreated and the 47 treated 
signalized intersections were simulated using 
the VISSIM microscopic traffic simulation 
model, version 5.40, (PTV, 2012) to extract 
vehicles trajectories. Table 1 shows the 
VISSIM parameters used in the simulation 
of vehicles in this paper.

In our study, the AM and PM peak hours 
traf f ic volumes were simulated using 
VISSIM to extract vehicle trajectories for 
the treated and the untreated intersections. 
The obtained trajectories are then used 
to obtain traffic conf licts. Fifty VISSIM 
simulation runs with 5-minutes warming-
up period (i.e. the Simulation Initialization 
Period) were used to simulate traffic at each 
intersection. It is worth noting that for each 
simulation run a unique random seed was 
used to capture the randomness in traffic at 
each intersection. To ensure that all vehicles 

entered the simulation network, a 2-hour 
simulation time was used.

The Surrogate Safety Assessment Model 
(SSAM) (Pu and Joshi, 2008) was used 
to obtain the traffic conf licts from the 
simulated vehicle trajectories. In this study 
the total number of traffic conf licts for 
two TTC thresholds:  ≤1.50s, and ≤ 0.50s 
were considered. The 1.50s TTC threshold 
ref lects a lower level of risk that assumes 
vehicles are in potential conflicts if drivers 
have less than 1.50s to perceive a danger 
and react accordingly. On the other hand, 
the 0.50s TTC threshold ref lects a much 
higher risk wherein a driver only have 0.50s 
or less in which to take appropriate action to 
avoid a crash. These TTC thresholds have 
been used by other researchers (Shahdah et 
al., 2014; Cunto, 2008; Archer, 2005; etc.). 
The number of traffic conflicts at each site 
was calculated as an average from the 50 
simulation runs.

Table 1
Simulation Behavioral Parameters 

Parameter Value

Driving Model Urban (Motorized)

Car-Following Model Wiedemann 74

Car-Following Parameters

ax = 2.00 m*

bx_add = 2.00**

bx_mult = 3.00***

Smooth close-up

Conflict Areas****

Front gap = 0.00s

Rear gap = 0.00s

Avoid Blocking = 0 for all cases and =1 in case 
of 2 left-turn lanes

* The average standstill distance with standard deviation of 0.30 m;
** The additive part of safety distance;
*** The multiplicity part of safety distance; 
****Left turn only.
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5. Calibration of Crash-Conflict SPF

A tot a l  of  53 u nt reated s ig n a l i z ed 
intersections were used to establish the 
empirical relationship between observed 
crashes and simulated conf licts. Table 2 
summarizes traffic volume inputs used in the 
simulation for the treated and the untreated 
intersections. Table 3 summarizes observed 
rear-end (R E) and lef t-turn opposing 
(LTOPP) crashes at these intersections. 
Only vehicle-to-vehicle crashes have been 
considered in this study. LTOPP crashes 
refer to possible crashes between a left-
turning vehicles and through vehicles in the 
opposing direction. Rear-end conflicts are 
considered to be affected by treatment since 
left-turn signal priority requires vehicles to 

slow down, especially if drivers are faced 
with a risky gap acceptance decision prior 
to initiating the  left turn maneuver. This 
affects the likelihood of higher risk rear-end 
interactions with following vehicles in the 
traffic stream. 

Table 4 summarizes simulation results 
for vehicle-to-vehicle conf l icts w ith 
TTC≤1.50s and TTC≤0.50s, respectively. 
It is worth noting that in our analysis we 
assume normal road, traffic and weather 
conditions, since the VISSIM parameters 
used in this study were calibrated for normal 
weather conditions. The observed crash data 
used in calibrating the crash-conflict SPF 
model were also filtered for normal weather 
conditions. 

Table 2
Traffic Volume at Treated and Untreated Sites

Untreated Sites

Statistic Volume in 
Major

Volume in 
Minor

%RT 
Major %RT Minor %LT Major %LT Minor

Number 53 sites
Average 1301.62 764.91 10.63 16.07 6.36 12.04

SD* 417.22 270.57 6.24 8.31 5.87 9.70
Maximum 2246 1367 34 54 33 46
Minimum 663 48 0 0 0 0

Treated Sites
Summary 
Statistic

Volume in 
Major

Volume in 
Minor

%RT 
Major %RT Minor %LT Major %LT Minor

Number 47 sites
Average 2549.43 1349.06 10.28 22.25 10.91 19.95

SD* 934.08 761.98 7.15 16.37 5.01 13.01
Maximum 4742 3340 40 81 26 66
Minimum 847 157 2 5 1 0

*SD: standard deviation

Table 3
Crash Data at Untreated Sites

Statistic Rear-End LTOPP
Sum 915 309

Average 17.26 5.83
SD 11.34 5.56

Maximum 48 20
Minimum 2 0
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Table 4
Simulated Conflicts at Untreated Intersections

Statistic
TTC≤1.50s TTC≤0.50s

Rear-End LTOPP Rear-End LTOPP
Sum 348.00 29.78 17.16 8.62

Average 6.57 0.56 0.32 0.16
SD 5.58 0.44 0.37 0.17

Maximum 23.98 1.82 1.98 0.90
Minimum 0.36 0.00 0.00 0.00

A Generalized Linear model (GLM) SPF 
functions, with assumed Negative Binomial 
(NB) error distribution, were fitted to the 
crash-conflict data for the 53 untreated sites, 
based on the SPF formula in Equation (5). 
The R-statistical software (R Development 
Core Team, 2019) was used to obtain the SPF 

model parameters. It is worth noting that the 
R-Software uses maximum likelihood method 
in estimating the GLM model parameters.

The SPFs estimates (with standard errors in 
parentheses) and goodness of fit for RE and 
LTOPP crashes are as follows:

1- RE crashes with TTC<1.50s:

( ) 2.07[0.15] 0.46[0.08] ( )
Dispersion Parameter 0.195; ResidualDeviance 53.85
Degrees of freedom 51; 2log likelihood 364.52; AIC 370.52

RELN C LN CF= +
= =

= = − =
 (7)

2- RE crashes with TTC<0.50s:

( ) 3.27[0.21] 0.216[0.096] ( )
Dispersion Parameter 0.31; ResidualDeviance 55.18
Degrees of freedom 51; 2log likelihood 385.58; AIC 391.58

RELN C LN CF= +
= =

= = − =
 (8)

3- LTOPP crashes with TTC<1.50s:

( ) 2.14[0.14] 0.58[0.13] ( )
Dispersion Parameter 0.42; ResidualDeviance 59.51
Degrees of freedom 51; 2log likelihood 279.55; AIC 285.55

LTOPPLN C LN CF= +
= =

= = − =
 (9)

4- LTOPP crashes with TTC<0.50s:

( ) 2.80[0.30] 0.56[0.14] ( )
Dispersion Parameter 0.53; ResidualDeviance 58.76
Degrees of freedom 51; 2log likelihood 287.16; AIC 293.16

LTOPPLN C LN CF= +
= =

= = − =
 (10)
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All the parameters in Equations (7) - (10) 
are statistically significant at the 5% level. 
For LTOPP crashes with TTC ≤0.50s and 
TTC≤1.50s, differences in the A kaike 
Information Criterion (AIC) were found to 
be less than 10. This suggests that there is no 
significant difference between the two LTOPP 
crash models with TTC ≤0.50s and TTC≤1.50s. 
On the other hand, the rear-end crash model 
with TTC ≤ 1.50s is better than the model that 
was obtained for TTC ≤0.50s, as the AIC value 
is significantly lower for TTC ≤1.50s.

In addit ion to the A IC cr iter ion, the 
Cu mu lat ive R esidua l (CU R E) plot s 
(Hauer and Bamfo, 1997) were obtained 
for the targeted crashes (i .e. LTOPP 
crashes) as shown in Fig. 1. for TTC≤1.50s 
and TTC≤0.50s, respectively, and these 
plots suggest that the crash-conf l ic t 
models provide a good fit for the observed 
crash data over the full range of conf lict 
thresholds. It is worth noting that similar 
plots were obtained for R E crashes and 
conf licts with similar results.

(a) (b)

Fig. 1. 
CURE Plots for LTOPP Conflicts with (a) TTC≤1.50s and (b) TTC≤0.50s

6. Treated Sample

For t y-seven (47) t reated s ig na l ized 
intersections with only one treated approach, 
from Toronto, Canada, were used to evaluate 
the treatment effect. Traffic volume data at 
the treated intersections are summarized in 
Table 2. Table 5 provides a summary of the RE 
and LTOPP crash data used in this analysis. 

It is worth noting that, the observed crashes 
show a reduction of 25% in RE crashes and 
45% reduction in LTOPP crashes. These 
changes are due solely to the RTM bias 
and should not be used to guide treatment 
effect (LT phase change from permissive to 
protected permissive).

Table 5
Summary of Crashes for the Before and After at Treated Sites

Statistic
Rear End LTOPP

Before After Before After
Sum 1837 1383 558 314

Mean 39.09 29.43 11.87 6.68
SD* 35.10 22.98 9.94 6.13

Maximum 125 88 36 32
Minimum 0 0 0 0

*SD: standard deviation
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Table 6 summarizes the traffic conflicts for 
RE and LTOPP conf licts for TTC≤1.50s 
and TTC≤0.50s, as obtained from the 
simulation of the 47 treated intersections.  

It is worth noting that the simulation was 
carried out for the same traffic volumes with 
treatment and without treatment periods, 
for the corresponding signal priority phase. 

Table 6
Simulated Conflicts for the Before and After at Treated Sites

TTC Threshold Treatment Period Statistic Rear End LTOPP

≤1.50s
Before Average

SD*
1371.78
[34.85]

164.00
[11.77]

After Average
SD*

1296.42
[34.77]

118.70
[10.13]

≤0.50s
Before Average

SD*
12.28
[3.59]

19.18
[4.49]

After Average
SD*

11.72
[3.68]

16.28
[4.19]

*SD: standard deviation

7. Crash Modification Factors (CMFs) for 
treated intersections

Table 7 summarizes the results of the 
application of crash-conflict EB before-and-
after analysis for the treated intersection 
sample. These results consider rear-end and 

LTOPP crashes and two TTC thresholds. 
Increasing TTC threshold from 1.50s to 0.50s 
has the effect of reducing the effectiveness of 
the treatment for LTOPP crashes, and this 
is expected since the lower risk threshold 
(TTC≤1.5s) is expected to pick up a larger 
number of conflicts in the simulation.

Table 7
CMFs at Treated Intersections Using Proposed Method

Crash Type TTC 
Threshold λsum

*  πsum
** VAR(πsum) CMF SE

Rear-end
≤1.50s 1383 1361.650 1822.852 1.015*** 0.042

≤0.50s 1383 1287.659 1647.704 1.073**** 0.044

LTOPP
≤1.50s 314 454.406 587.015 0.689*** 0.053

≤0.50s 314 448.799 581.974 0.698*** 0.054
*Sum of the observed crashes in the after period;
**Sum of the expected crashes in the after period;
***Statistically significantly different from EB estimate at 5% confidence level;
****Not statistically significantly different from EB estimate at 5% confidence level.

The CMF estimates are compared with 
values from an EB before-and-after analysis 
that uses the conventional prior (crashes 

verses traffic volumes and road geometric 
attributes) in the EB formulation, for the 
same treatment and exactly the same treated 
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intersections from Toronto, Canada. The 
results of the conventional EB before-and-
after study by Srinivasan et al. (2011 and 
2012), for the same sites and treatment, are 
summarized in Table 8. It is worth noting 
that a reference group of 626 untreated 

signalized intersections were used by 
Srinivasan et al. (2011 and 2012) in their 
conventional EB model to calibrate the SPF 
(the prior in the EB structure) as a function 
of traffic volumes, number of approaches, 
presence of LT lanes, etc.

Table 8
Conventional EB Before-and-After CMFs 

Crash Type λsum
* πsum

** CMF SE

Rear-end 1266 1383 1.091 0.046

LTOPP 341 314 0.919 0.069
*Sum of the observed crashes in the after period;
**Sum of the expected crashes in the after period.
(Source: Srinivasan et al., 2012)

The CMF estimates (in Table 7 and Table 
8) for rear-end crashes with TTC≤0.50s 
are comparable to the CMF values from the 
conventional EB before-and-after analysis, as 
there is no statistically significant different 
between them at the 5% level. However, as 
the threshold is increased the difference 
becomes significant at the 5% level. For 
LTOPP crashes, CMF estimates were found 
to be significantly different at the 5% level for 
both TTC thresholds. The result suggest that 
the crash-conflict model shows treatment to 
be more effective in reducing LTOPP crashes 
than was predicted by the conventional EB 
model. This is intuitively more logical since 
we expect LTOPP conflicts to be significantly 
reduced by this type of treatment. It is 
worth noting that the standard error (SE) 
associated with CMF estimates from the 
proposed method is smaller than those from 
the conventional EB for both RE and LTOPP 
crashes and for both TTC thresholds.

It is worth noting that the same intersections 
and treatment were used in other traffic 
conf lict analyses, by Shahdah et al. (2014 
and 2015), to estimate CMFs based mainly 

on simulated traffic conf licts. The results 
in this research paper is consistent with the 
results from Shahdah et al. (2014 and 2015). 

8. Conclusions

This study suggests that simulated traffic 
conf licts can be used instead of traffic 
volumes to enhance the performance of EB 
before-and-after analysis for estimating 
treatment effects. The integration of traffic 
conf licts in the EB model requires the 
development of a crash-conflict relationship 
(i.e., to estimate priors) and the simulation of 
the treated sites with and without treatment 
for the same traf f ic volume to ref lect 
treatment effects only. 

A treated signalized intersection sample 
from Toronto was used to obtain CMF 
estimates from the proposed method and 
to compare results with conventional EB 
estimates. CMF estimates for rear-end 
crashes at high risk TTC threshold (i.e., 
TTC≤0.50s) are similar to estimates from 
conventional EB. On the other hand, CMF 
estimates for LTOPP suggests a more 
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significant reduction in crashes at treated 
sites than was obtained from conventional 
EB before and after analysis. These results 
are more intuitive since we would expect 
the reduction of LTOPP conf licts to be 
the primary focus of the prohibited LT 
treatment. Furthermore, the standard 
error associated with CMF estimates from 
the proposed method is lower than those 
obtained from conventional EB for both 
rear-end and LTOPP crashes and both TTC 
thresholds. As the proposed method is based 
mainly on simulated conf licts, it has the 
added advantage to account for high-risk 
vehicles interactions that are by default not 
considered in the reported crashes by police.
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