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Abstract: Rail freight transport is one of the most preferred modes of green transport since 
it emits three times less CO2 and particulates per ton-mile than road transport. Train energy 
consumption is the biggest issue related to rail traction costs. Data about freight trains energy 
consumption per year are not possible to define precisely, so it is convenient to use fuzzy logic 
as a tool for data prediction. In order to predict it, we provide Wang - Mendel method for 
combining both numerical and linguistic information into a common framework – a fuzzy 
rule base. Relevant input variables are: freight train kilometers, average freight trains weight 
and non-productive kilometers. The output variable from the defined fuzzy logic system is 
average energy consumption per year for rail freight transport. The proposed model is applied 
and tested on real data collected in the Republic of Serbia. 
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1. Introduction

The term green logistics represents all efforts 
to manage and minimize the ecological 
impact of logistics activities. The main aim of 
this concept is moving and delivering goods 
with the lowest cost, but with the highest 
standards and minimal environmental 
impact.

In that sense, rail freight transport is one of 
the most preferred modes of transport since 
it emits three times less CO2 and particulates 
per ton-mile than road transport. Besides 

these ecological benefits, rail transport is 
the most cost-effective mode of transport. 

Rail transport gives the most important 
contribution to the green logistic concept, 
compared to all transport modes, because 
it is the least harmful to the environment. 
Table 1 shows date given in the studies for 
the years 2000 and 2008. In both studies, 
rail freight transport has the lowest external 
costs. One can notice that all modes of 
transport significantly decreased external 
cost in 2008 compared with the cost in 
2000. 
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Table 1
Average External Costs - EU-27 Member States (Periods: 2000 and 2008) [€/tonne km]

INFRAS/IWW, 2004 CE/INFRAS/ISI, 2011

for 2000 for 2008

HDV 71.2 34

Road freight total 87.8 50.5

Rail freight 17.9 7.9

Inland waterways 22.5 11.2

Source: CE Delft, Infras, Fraunhofer ISI, 2011.

Fig. 1 shows a comparison of the external cost 
road and inland waterway modes of transport 
with the external cost of rail transport. Fig. 1 
gives a ration of these costs. One can notice 
that ration for HDV (heavy duties vehicles) 
is increased from 3.98 in 2000 to 4.3 in 2008. 

The biggest difference in the rations is for 
road freight total (from 4.91 in 2000 to 6.39 
in 2008). Rations for inland waterways are 
the smallest in the both years (1.26 in 2000 
and 1.42 in 2008). Fig. 2 gives a structure 
of external costs in 2008.

Fig. 1.
Average Cost Ration Compared to Rail (Freight Transport)
Source: CE Delft, Infras, Fraunhofer ISI, 2011.

Table 1 and Fig. 1 and 2 show the advantages 
of the railway transport mode, which lead 
to an evident growth in rail freight logistics 
such as: cheap transport when compared to 
other modes of transport; more efficient as 
it allows larger volume of cargo transport to 
long distances; the transport of goods by train 
reduces the amount of fuel and emissions; 

the rail transport is considered to be six to 
seven times more efficient than road transport 
and reduces emissions by ~30-70%. The 
road transport is still dominant mode of 
transport in most of the countries around 
the world. However, some facts (increasing 
road congestion, costs, and emissions of CO2) 
change the focus toward the railway transport.
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Fig. 2. 
Structure of External Costs (Freight Transport for 2008)
Source: CE Delft, Infras, Fraunhofer ISI, 2011.

The objectives of UIC (The International 
Union of Railways) are the rail share of 
freight land transport to be equal with 
the road and reducing specific average 
CO2 emissions from train operations by 
50% reduction by 2030. A consequence of 
these objectives is the energy consumption 
increasing. Train energy consumption is 
a basic and the biggest issue related to the 
rail traction costs. Data about freight trains 
energy consumption per year are not possible 
to define precisely, so it is convenient to use 
fuzzy logic as a tool for data prediction. In 
a defined problem, fuzziness appears due 
to the lack of ability of exactly predicting 
certain values. 

In this paper, the model for train energy 
consumption prediction is developed. 
In order to forecast freight train energy 
consumption per year, we provide Wang-
Mendel met hod for combi n i ng bot h 
numerical and linguistic information into 
a common framework – a fuzzy rule base. 
Relevant input values are: freight trains 
kilometres, average freight trains weight, 
non-productive kilometres. The output value 
from a defined fuzzy logic system is average 
energy consumption per year for rail freight 

transport. The proposed model is applied and 
tested on real data collected in the Republic 
of Serbia.

The paper is organized as follows. After 
Introduction, in Section 2, brief literature 
review is given. The developed model 
for deter minat ion of electr ic energ y 
consumption for freight trains traction is 
presented in Section 3. Section 4 is dedicated 
to the case study, i.e. to the application of 
presented model on Serbian railway network. 
Last Section presents conclusions and future 
research directions. 

2. Brief Literature Review 

Wang Mendel method generates fuzzy rules 
from examples. Giving the literature review of 
the fuzzy systems in the transportation fields, 
Teodorović (1999) referred several papers 
with Wang Mendel method applications. 
Teodorović (1999) emphasized that Wang 
Mendel method represents a nonlinear 
mapping, with the possibility to approximate 
any real continuous function to arbitrary 
accuracy. Wang (2003) extended this method 
to enhance the practicality. The author 
presented the approach for ranking the 
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importance of input variables and proposed 
an algorithm for solving pattern recognition 
problems. Chen et al., (2007) emphasized that 
Wang Mendel rule generation method is the 
one of the earliest algorithms, but with one 
disadvantage. This method selects the rules 
with the maximum degree, without taking 
into consideration other conflicting rules. The 
authors compared three methods, and the main 
conclusion of the paper is that the weighted 
mean method has the best robustness and 
error-tolerance, consequently this approach is 
suitable for extracting rules from the real data 
with noise. The results obtained by Yanar and 
Akyurek (2011) indicated that Wang Mendel 
method provides better starting configuration 
for simulated annealing compared to fuzzy 
C-means clustering method.

Wang Mendel method was used for energy 
consumption forecasting in Jozi et al . , 
(2017). Results showed that the proposed 
method using the combination of energy 
consumption data and environmental 
temperature is able to provide more reliable 
forecasts for the energy consumption than 
several other methods experimented before, 
namely based on artificial neural networks 
and support vector machines. Authors Yang 
et al., (2010) presented an improved Wang 
Mendel method for electric load forecasting. 
They combined this approach with particle 
swarm optimization. 

3. Model for Prediction of Electric Energy 
Consumption for Freight Trains Traction

Electric energy consumption for freight 
t ra i n s t rac t ion depend s on v a r iou s 
parameters such as: the utilization factor 
of the overhead line and the electrical 
substations, the power of the locomotive, the 
corrected virtual coefficient, train speed, the 
length of the section and the specific electric 

energy consumption per power. Since we do 
not have access to all these data, we apply 
Wang-Mendel method (Wang and Mendel, 
1992) on the data which are available.

In order to predict the consumption of 
electric energy for the traction of freight 
trains on an annual basis, we take into 
account the following:

• Input variables:

1. Trains kilometres -TK [km] - It represents 
the number of kilometres that all electric 
locomotives passed by hauling freight 
trains, during one year. The greater 
the number of kilometres travelled, 
the greater the consumption of electric 
energy. Data are given annually.

2. Average weight of trains - AWT [tonne] - 
It provides information on how much 
a freight train is loaded on average. 
Electric locomotive hauling heav y 
freight trains consumes more electric 
energy. Data are given annually.

3. Non-productive kilometres - NPK [km] - 
The number of kilometres travelled by 
electric locomotives when they are out of 
the traction, or when they are not at the 
front of a train. Data are given annually.

• Output variable:

1. Average energy consumption - AEC [kWh] 
- It represents the amount of electric 
energy consumed by all the locomotives 
while they performed freight trains 
traction. Data are given annually.

For the implementation of Wang-Mendel 
model, it is necessary to have appropriate 
numerical data about the input and output 
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variable (Table 2). As it can be noticed each 
set of desired input-output data is given in 

the form of:  {(x1
(1), x2

(1), x3
(1); y(1)), (x1

(2), x2
(2), 

x3
(2); y(2)), …, (x1

(8), x2
(8), x3

(8); y(8))}.

Table 2
Values of Input and Output Variables, in the 2007-2014 period

Year TK AWT NPK AEC

2007 4 909 390 943 957 821 132 722 827

2008 6 890 035 1018 973 953 172 117 737

2009 6 547 541 1150 1 044 119 153 103 010

2010 5 091 884 998 841 230 114 569 156

2011 5 152 954 1100 690 245 118 585 848

2012 4 057 087 971 761 418 92 500 913

2013 4 628 479 912 693 911 110 200 700

2014 5 851 905 840 995 357 112 093 124

Source: data collected in the Republic of Serbia

In the first step of Wang Mendel method, 
input and output spaces are divided into fuzzy 
regions. Assume that the domain intervals of 
x1, x2, x3 and y are [x1-, x1+], [x2-, x2+], [x3-, 

x3+] and [y-, y+], respectively. We divide each 
domain interval into 2N+1 regions (N may 
vary from variable to variable) and assign 
each region a fuzzy membership (Table 3). 

Table 3
Variable Domains

Variable Domain

Trains kilometres [in million km] [3.5, 7]

Average weight of trains [in tonnes] [700, 1300]

Non-productive kilometres [in thousand km] [500, 1200]

Average energy consumption [in million kWh] [80, 180]

The domain division for the variable “Trains 
kilometres” has been done into 3 fuzzy sets (Fig. 3):
• Small [3.5, 3.5, 4, 5] - represents a small 

volume of the freight train kilometres;

• Medium [4, 5, 6] - represents a medium 
volume of the freight train kilometres;

• Large [5, 6, 7, 7] - represents a large 
volume of the freight train kilometres.
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Fig. 3. 
Membership Functions of “Trains Kilometres” Fuzzy Variable 

The domain division for the variable “Average 
weight of trains” has been done in same way. 
Domain division is shown in Fig. 4:
• Light [700, 700, 800, 900] - represents 

a light weight of freight trains;

• Medium [800, 100, 1200] - represents a 
medium weight of freight trains;

• Heav y [1100, 1200, 1300, 1300] - 
represents a heavy weight of freight 
trains.

Fig. 4.
Membership Functions of “Average Weight of Trains” Fuzzy Variable

For the variable “Non-productive kilometres” 
domain has been divided in three fuzzy sets 
(Fig. 5):
• Small [500, 500, 600, 800] - represents 

a small amount of non-productive 
locomotive kilometres;

• Medium [600, 800, 1000] - represents 
a medium amount of non-productive 
locomotive kilometres;

• Large [80 0, 10 0 0, 120 0, 120 0] - 
represents a large amount of performed 
non-productive locomotive kilometres.
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Fig. 5. 
Membership Functions of “Non-Productive Kilometres” Fuzzy Variable 

Finally, it is necessary to cover a domain for 
“Average energy consumption” fuzzy variable 
(Fig. 6) with the membership functions. The 
division has been carried out on 5 intervals.
• Very low [80, 80, 100] - represents a very 

low energy consumption.;
• Low [90, 100, 120] - represents a low 

energy consumption;

• Medium [100, 120, 140] - represents a 
medium energy consumption;

• High [120, 140, 160] - represents a high 
energy consumption;

• Ver y H ig h [14 0, 16 0, 18 0, 18 0] 
-  represent s a ver y h ig h energ y 
consumption.

Fig. 6. 
Membership Functions of the Output Variable “Average Energy Consumption”

In the next step of Wang-Mendel method, 
the generation of the fuzzy rules should be 
done, based on numerical data. For each 
of the input-output pair, it is necessary to 
determine the membership degree to fuzzy 
sets that cover some of the intervals. After 
the membership degree determination, 

the considered values join that fuzzy set 
to which they belong with the highest 
membership degree (Teodorov ić and 
Šelmić, 2012).

Finally, we obtain one rule from one pair of 
desired input-output data, e.g.:
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(x1
(1), x2

(1), x3
(1); y(1))  =›[ x1

(1)(4.9 in Medium, max), x2
(1) (943 in Medium, max), x3

(1) 
(957.821 in Large, max); y(1) (132.7 in High, max)] =› Rule 1.

Rule 1:  IF x1 is Medium and x2 is Medium and x3 is Large, THEN y is High
After this procedure we made 8 fuzzy rules, the one for each input-output pair of data.

The fuzzy rules obtain from numerical data 
are given below:
• I f “TK ” is Medium and “AW T ” is 

Medium and “NPK” is Large then “AEC” 
is High;

• If “TK” is Large and “AWT” is Medium 
and “NPK” is Large then “AEC” is Very 
High;

• If “TK” is Large and “AWT” is Heavy and 
“NPK” is Large then “AEC” is Very High;

• I f “TK ” is  Medium and “AW T ” is 
Medium and “NPK” is Medium then 
“AEC” is Medium;

• If “TK” is Medium and “AWT” is Heavy 
and “NPK ” is Small then “A EC” is 
Medium;

• If “TK” is Small and “AWT” is Medium 
and “NPK” is Medium then “AEC” is 
Low;

• I f “TK ” is  Medium and “AW T ” is 
Medium and “NPK” is Small then “AEC” 
is Medium;

• If “TK” is Large and “AWT” is Light and 
“NPK” is Large then “AEC” is Medium;

Next step is to check all obtained rules and 
to eliminate same or conflict rules, i.e. rules 
that have same IF part but a different THEN 
part. In this example all defined rules are 
correct, there are no conflict or same rules. 

Most often, available pairs of input-output 
data are not sufficient to “cover” all the 
different situations that can happen in a 
particular system. Fuzzy rule base is more 
complete if the number of different input-
output data pairs is bigger. In order to 
obtain better results fuzzy rule base may 
be amended with additional fuzzy rules 
generated by an expert. The final fuzzy rule 
base in the case of prediction of freight train 
average energy consumption in Serbia is 
shown in Table 4. Fuzzy rules generated by 
the experts are underlined.

Table 4
Final Fuzzy Rule Base

TK-Small TK-Medium TK-Large
AWT
light

AWT
medium

AWT
heavy

AWT
light

AWT
medium

AWT
heavy

AWT
light

AWT
medium

AWT
heavy

NPK
small

Very 
low

Very 
low Low Low Medium Medium Medium High Very 

high
NPK

medium
Very 
low Low Low Low Medium High Medium High Very 

high
NPK
large

Very 
low Low Low Medium High Very 

high Medium Very 
high

Very 
high
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4. Case Study – Results and Discussion

Considering the Serbian railway network, 
there is only 1278.7 km electrified railway 
lines that are one-third of the total network 
length (3735.8 km). The forecast of freight 

traffic on Serbian railway network (Fig. 7) 
for period 2018-2022 shows an increase 
in freight traffic (Ćalić, 2018), and it is 
considered that most of the forecasted 
transport of goods will be carried out on 
electrified lines, as they are main lines.

Fig. 7.
Forecast Freight Train Transport for Period 2018-2022, on Serbian Railway Networks

In order to test our model we apply the 
following input data (for year 2013):

• TK = 4.628 million kilometres;
• AWT = 912 tonnes;
• NPK = 693.911 thousand  

kilometres. 

After defuzzification process, for which the 
centre of gravity is used, the output value is 
obtained: AEC is 109 million kWh.

Table 5 shows comparison of the results 
between real data and the one obtained from 
Wang - Mendel method. 

Table 5
Comparison of the Results

Year TK [mil km] AWT [tonne]
NPK  

[thousands of 
km]

AEC [mil kwh]
AEC using Wang 

Mendel  
[mil kwh]

Deviation [%]

2007 4.909 943 957.821 132.723 133 0.21%
2008 6.890 1018 973.953 172.118 164 -4.95%
2009 6.547 1150 1 044.119 153.103 163 6.07%
2010 5.092 998 841.230 114.569 128 10.49%
2011 5.153 1100 690.245 118.586 125 5.13%
2012 4.057 971 761.418 92.501 103 10.19%
2013 4.628 912 693.911 110.201 109 -1.10%
2014 5.852 840 995.357 112.093 133 15.72%
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From Table 5 and Fig. 8 it can be seen that 
developed Wang - Mendel method is able 
to predict energy consumption within 10% 
deviation in 5 cases, in 2 cases deviations 

are near 10%, and in just one case deviation 
is close to 16%. These results are very 
encouraging for the further implementation 
of this model. 

Fig. 8.
Comparison of the Results

5. Conclusion

Electr ic energ y consumption for ra i l 
freight transport is uncertain and hard to 
be predicted. W hen the data on energy 
consumption from previous period are 
available, Wang-Mendel method could be 
used to obtain fuzzy rules. However, fuzzy 
rules that could be defined according to data 
from the past most often do not reproduce 
all possible situations, which could emerge 
as a result of input variables membership 
functions combinations. This often leads 
to imprecision and inaccuracy.

This paper presents the model for prediction 
of f reight tra in energ y consumption. 
Relevant considered input are: freight train 
kilometers, average freight train weight and non-
productive kilometers. The developed model 
is verified through the real data collected 
in the Republic of Serbia.   
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