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Abstract: The research scope of the real-world logistics industry case study is extended by 
taking uncertainty in customer demand into account. The particular vehicle routing planning 
parameters of the logistics provider under study are formulated and are used in two algorithms. 
The algorithms solve practical problem cases considering a limited number of drivers and 
a limited company’s fleet size but unlimited when considering outsourcing. All trucks are 
allowed to service multiple trips. The computation is based on real-life data sets. The analysis 
of the running time and the total transportation cost are compared among three competitive 
methods. The methods are: the technique based on the company’s know-how, a genetic 
algorithm hybridized with three search operators, and a deterministic annealing hybridized 
with three search operators. The developed schemes have been proven successful to obtain a 
near-optimal solution within a reasonable running time. Furthermore, the adaptation of the 
minimax concept is embedded into the algorithms to find a robust solution for the worst case 
scenario subject to handling fluctuating situations in demand. In the last phase, two indicators 
comprising the extra cost and the unmet demand ratios are proposed to help a decision maker 
to obtain a better view on his decision.
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1. Introduction

As many companies focus on their core 
business, warehousing and transport activities 
are many times outsourced to third-party 
logistics providers. Road transport is still the 
most used mode of transport for distribution 
of goods. Logistics providers want to use their 
fleet of vehicles in the most efficient way, so 
route optimisation comes into the picture. In 
the operations research literature, the Vehicle 
Routing Problem (VRP) is one of the most 

studied problems because of both its practical 
relevance and its computational complexity. 
The issue concerns the distribution of goods 
between depots and customers along a set of 
routes for a fleet of vehicles where an objective 
function (e.g. total distance, total routing 
cost) is optimized. Customer demand must be 
met and vehicle capacities respected. Solving 
a basic vehicle routing problem involves two 
elements: the assignment of all customers 
to a trip and the sequence in which each are 
visited (Toth and Vigo, 2014).
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Idea l ly a l l  i nput pa ra meter s to t he 
o p t i m i z a t i o n  p r o b l e m  s h o u l d  b e 
deterministic. However real-life cases face 
uncertainties in demand, in travel time and in 
availability of the vehicles. The route planner 
may be confronted with data disturbances in 
the routine activities. An optimal solution 
produced by using deterministic input 
variables may be infeasible or not good 
enough in case a situation has changed. 
In this research, we study a practical case 
of a heterogeneous f leet vehicle routing 
problem with real-life constraints under 
demand uncertainty aiming to f i l l the 
gap between recent academic research of 
vehicle routing problems and transportation 
industry applications. Two metaheuristic 
algorithms are developed. A first technique 
extends the procedure of an evolutionary 
algorithm using a genetic algorithm from 
Mungwattana et al. (2016). The literature 
also indicates that the family of simulated 
or deterministic annealing algorithms is an 
attractive methodology to apply for solving 
VRPs. As a second technique a deterministic 
annealing algorithms is developed in order 
to compare its performance against the 
genetic algorithm and the method based 
on the company’s know-how.

Many of the articles related to the Vehicle 
Routing Problem are of pure academic 
nature. The scientific literature publishes 
from time to time reviews on the evolution 
of either solution methods for the variants 
of the VRP or on a classification of various 
types of VR Ps. A recent review can be 
found in Braekers et al., (2016), in which the 
interested reader can find references to most 
of the earlier reviews and classifications. 
The increase in computing power and the 
development of efficient algorithms has 
made that complex variants of the VRP, 
as they appear in real-life cases, can be 

solved in a reasonable time. In literature 
these problems are indicated as ‘rich vehicle 
routing problems’ (Hartl et al., 2006, Cruz 
et al., 2014). Hasle and Kloster (2007) call 
this type of problems ‘industrial or applied 
vehicle routing’. A need exists in literature 
to describe solutions for real-life cases with 
their specific constraints. Some examples of 
case studies are given in the next paragraph.

Mancini (2015) constructs a search method 
to assign the best fit refrigerated vehicles 
starting from different depots to serve 
customers. In the problem sets, the customer 
needs are given in units of demand, a solution 
is feasible as long as the total demand does 
not exceed the truck capacity. An additional 
study in the refrigeration logistics is found in 
Zhang and Chen (2014). The authors extend 
the classical VRP by allowing the trucks to 
carry multiple kinds of goods from the same 
courier. A genetic algorithm is developed to 
find the optimal solution aiming to minimize 
the sum of transportation and refrigeration 
costs. Penalty and cargo damage costs are 
added to the total cost when some constraints 
are violated. Sometimes loading constraints 
are combined with the routing problem. In 
a study on the fibre board industry, Pace et 
al. (2015) extended the customer constraints 
by involving loading methods including 
stacking limitation, maximum capacity and 
load balance.

The parameters consisting of customer 
demand, number of customers, customer/
depot geographical locations, travel times/
travel distances, and transportation costs are 
the main consideration of most published 
research. In pract ice, a lthough other 
factors such as vehicle availability, resource 
performance, restricted traff ic access, 
etc. can inf luence the results. Regarding 
uncertainties, in literature, most attention 
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has been paid to travel time uncertainty. 
Stochastic travel times have been studied in 
e.g. Laporte and Louveaux (1992), Janssens 
et al. (2009).

This research concentrates on uncertainty 
in demand. In order to deal with the 
uncertainty, typically a business sets the rule 
that customers should submit the demand 
requirements (orders) in advance. However, 
in practice, a planner is confronted with 
the problem that the information is revised 
frequently by customers. In the company 
under study, it spends a lot of time and 
effort to re-compute new solutions to satisfy 
the new input data set under the various 
constraints such as time windows, working 
hour regulations, etc. Besides time spending, 
the consequence of changes might have an 
impact on costs such as 1) lost opportunity 
cost occurs when the company cannot 
organize the vehicles or manpower resources 
to serve the new demand additionally to the 
initial plan, 2) on the contrary, the reserved 
availability of trucks, rental trucks, or drivers 
can become idle in case the change is less 
than in the original planning, 3) the company 
has to pay a penalty on a monthly basis in 
case the service performance is lower than 
the agreement, such indicator is calculated 
based on actual serviced demands against the 
total volume of the product delivery request, 
and so on. Uncertainty in demand has been 
studied in literature. Demand uncertainty 
is a serious problem in the VRP as it may 
lead to unmet demands. Due to the limited 
vehicle capacity, the main issue is that a 
vehicle might have to pay an extra visit to 
the depot for restocking, which requires 
algorithms for re-optimisation (Haughton, 
1998). Exact solutions for the VRP with 
stochastic demand and customers have 
been proposed by Gendreau et al. (1995) 
and Sungur et al. (2008). Metaheuristics like 

tabu search have been proposed by Gendreau 
et al. (1996) and particle swarm optimization 
by Moghaddam et al. (2012).

Earl ier, Bräysy et al . (2008) proposed 
a metaheurist ic method adapting the 
annealing concept to solve the f leet size 
and mix vehicle routing problem with time 
windows. In order to speed up the process in 
the solution improvement phase, the authors 
implemented multiple local search operators 
into the deterministic annealing scheme. 
The neighbourhood search is one of the 
attractive tools which have been employed 
in the heterogeneous f leet VRP in order to 
compose satisfactory solutions. The example 
of neighbourhood search implementation in 
the specific vehicle routing problem with 
time windows and multiple depots was 
presented in Xu et al. (2012) which uses insert 
and exchange operators to form a solution. 
Another adaptation of local neighbourhood 
search operators has been displayed in 
Salhi et al. (2014). The authors defined the 
specific term of a borderline customer, i.e. 
a customer node located approximately half 
way between the first and second nearest 
depots were selected to insert into the 
prior solution aiming to reduce the cost. 
An additional real-life case example has 
been found in Belfiore et al. (2009). The 
authors defined the mathematical models 
for the vehicle routing problem with time 
windows and split deliveries by using a real-
life situation of a big retail group in Brazil. 
The scatter search evolutionary method was 
introduced targeted to minimize the total 
distance travelled under the time window 
constraints. The insert operator was built 
in the programming to construct the initial 
solution. The authors took advantage of 
the scatter search strategy in order to 
maintain a set of diverse and high quality 
candidate solutions. The best solution set is 
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updated. In this way, the solution was then 
improved from time to time until reaching 
the maximum number of iterations.

As described in Mulvey et al. (1995) and 
Haughton (1998), the robust approach has 
proven successful to handle uncertainty. 
The result which is obtained from a robust 
approach remains close to the optimum, 
not for one situation but for all cases under 
consideration. Yin et al. (2009) purposed 
the sensitivity-based, scenario-based and 
min-max to determine the robust approaches 
under the uncertainty of travel demand. 
Manisri and Mungwattana (2012) proposed 
three indicators consist ing of robust 
deviation, sum square error, and robust risk 
criteria to evaluate the solution robustness 
of a solution to the vehicle routing problem 
with uncertain travel time due to traffic 
congestion. The experiment shows that the 
robustness approach was able to maintain 
a good performance although it was in the 
worst case scenario. The Dantzig-Wolfe 
decomposition technique and a dynamic 
programming procedure were applied in the 
algorithm proposed by Lee et al. (2012). Two 
input parameter sets comprising of travel 
time and customer demand were considered 
as being the source of uncertainty. The 
experiment results suggested that the 
constructed method of robust approach could 
generate a satisfactory solution to achieve the 
target of travel distance minimization.

For this real-life case, customer demand is 
considered as being uncertain and a worst case 
approach is considered, i.e. minimax-based, 
to obtain the robust solution. The last stage 
is to measure the extra cost and the unmet 
demand. Both indicators are used to provide 
additional information for a decision maker in 
order to evaluate the final outcome. Section 
2 introduces the formal problem description.

2. Problem Description

The company under study has a total of N 
customers. The company has  one central 
distribution point. The set of customer nodes 
is indexed by j = 1, 2, ..., N and node 0 is 
defined as the depot. Customer j provides 
the information of its demand requirement 
of the commodity type p where p  P to the 
logistics provider. The planning department 
consolidates the customer information 
and determines the routes by assigning an 
available vehicle k to carry the commodity 
p to deliver to customer j. The company 
has |K| different types of vehicles (k  K). 
A ‘vehicle’ should be understood as the 
combination of a truck and a semi-trailer (a 
semi-trailer truck, hereafter called “truck”). 
Each type of truck has a known capacity, 
mpk. In case that the company’s vehicles 
cannot fulfil the customers’ demands, an 
outsourcing service by a logistics provider 
is the second choice. It is assumed that 
the third party logistics providers have an 
unlimited number of trucks and can serve 
all types of products. They can bring a truck 
into service immediately when the company 
(the shipper) has a requirement. Besides the 
truck resource, the number of the company’s 
drivers is another factor which may disrupt 
the vehicle utilization. According to the 
policy, only the employees of the company 
are allowed to drive the company’s trucks. 
In case the required drivers are absent, an 
outsource provider is contacted to fulfil 
the customers’ demands. The available 
number of company’s drivers is known as 
M. Therefore, the assigned f leet size must 
be less than or equal to M.

Based on the confidential terms of agreement 
and large demand volumes, these two 
conditions force all trucks, including the 
subcontractors’ vehicles, to start from and 
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return to the central depot after an unloading 
activity at the customer j site is done. In other 
words, the transportation activity is a full-
truckload delivery, which means that a truck 
does not serve more than one customer in a 
single route. Although unexpected events, 
such as a road accident or a traffic block, 
may occur during travelling, this research 
ignores this factor and makes use of a cycle 
time  representing the expected travel 
time between the depot and a customer 
node including the expected service time 
by the truck k at the customer j. In the case 
study, the customers are located in the same 
industrial estate and are not far from each 
other. Therefore, the trucks are allowed to 
service multiple trips as long as the drivers 
working hour restriction is not violated. 
Furthermore, some customers determine 
limits on the operation time window, and 
strictly request the truck providing the 
service within the time windows. Therefore, 
we consider a period of t ime, cal led a 
time window as being a constraint of this 
problem. A truck k does not allow entering 
the customer j site before the earliest opening 
time, ej or after the latest arrival time, lj. 

In addition, two factors of the product 
carried, its weight and dimension limit the 
semi-trailer’s capacity. In practice, each 
assigned semi-trailer truck can carry one 
product type to one customer on each trip. 
The loading capacity of each type of vehicle 
depends on the product carried which is 
given by a payload value or an available load-
capacity for each kind of semi-trailer, . The 
determined value cannot be greater than the 
truck’s capacity. The demand quantity of a 
customer j is denoted by  and is usually 
beyond the truck ’s capacity. Therefore, 
a partial delivery  is accepted by the 
customers. However, the company must pay 

penalties to the customer based on business 
agreement if it cannot schedule the vehicles 
to serve the total requested demand within 
the time window. In this study, such a penalty 
is neglected but all orders are guaranteed to 
be delivered completely by tightening the 
constraint. Additionally, due to the fact that 
the case-study company is confronted with 
fluctuation in demand, this paper focuses on 
the real-life case by considering uncertain 
customer demands. We denote Ud to be the 
set of uncertain demands and define a term of 

 to describe the uncertainty 
model of the customer j where  is the 
expected demand of customer j. A fluctuating 
situation in demand S is the combination 
of different scenario s. We assume that 
the customer demand characteristic is 
determined by risk aversion , where  
is an independent random variable and  is 
the perturbation.

Battarra et al. (2009) studied real-world 
transportation and targeted to obtain the 
minimum transportation cost for which 
the trucks can deliver products to the 
supermarkets in more than one trip. The 
authors defined the research outline as being 
a multi-trip vehicle routing problem and set 
the objective to minimize the number of 
multiple trips. Although demand uncertainty 
is considered in our research, each individual 
scenario is like the classical problem with 
constant demand. By applying the minimax 
concept proposed in Kouvelis and Yu (1996), 
the set of the decision variables is denoted by 
X. The demand data set, Ds corresponding 
to the scenario s, is used as being the input 
variable. The optimal decision Xs*, related 
to input s is made towards the objective of 
minimizing the total number of trips. The set 
of all feasible decisions against the scenario 
s is denoted by Fs. 
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In this research, the total transportation 
cost is the combination of two components 
consisting of a fixed cost and a variable cost. 
The expenses for which the company pays 
for the vehicles depreciation, the vehicle 
insurance, and the vehicle tax are included 
into the fixed cost. The corporate expenses 
include the fuel cost which depends on the 
distance travelled, the driver cost, and the 
vehicle maintenance cost which varies with 
mileage used are comprised in the variable 
cost. The overall fixed and variable costs 
are combined into a set of vehicle costs c  
C where the vehicle cost c depends on the 
customer visited, the product served, and 
the type of vehicle used. Therefore, for this 
specific problem, the set of decisions Fs is 
defined as the term of  
, where  is the cheapest cost and  is the 
number of trips. The proactive robustness 
approach is focused to benefit in long run 
planning by hedging against all scenarios. 
One of the well known approaches is the 
absolute robust decision. The absolute robust 
decisions are of a conservative nature, as 
they are based on the anticipation that the 
worst case situation might happen. The 
solution is made against the best possible 
outcome under any realizable scenario, and 
thus bounding the magnitude of missed 
opportunities, which could be exploited by 
competitors, in the various scenarios. In this 
research, the robust decision is modelled as 
follows:

	 (1)

3. Solution Approach

A computational method based on the 
company’s know-how (called K-method) 
serves as being the benchmark problem set 
in order to compare the performance of two 

developed techniques. They are: 1) a genetic 
algorithm hybridized with three search 
operators (GA-HSO) and, 2) an adapted 
deterministic annealing hybridized with 
three search operators (DA-HSO). The 
structure of both techniques comprises 
three main procedure steps. First, the initial 
solution is produced based on the biological 
evolution mimicry of genetic organisms in 
the GA-HSO. For the competitive method, 
DA-HSO, the prel iminar y solution is 
obtained from the inspiration of annealing. 
Second, a solution improvement process 
is operated. The sub-functions include 
three operators called ‘cross’, ‘exchange’ 
and ‘el imination’ operators which are 
embedded into the solution improvement 
phase of the algorithms. The first and the 
second phases are iterated to seek for the 
best solution for each scenario. In the last 
step, the minimax technique is applied to 
find the robust solution.

The above discussion is a general overview 
of the presented approach. The details of the 
first technique, called the genetic algorithm 
hybridized with three search operators 
(GA-HSO) can be found in Mungwattana 
et al. (2016). Regarding the new method 
of the adapted deterministic annealing 
hybridized with search operators (DA-HSO), 
this technique is based on the concept of 
deterministic annealing which makes use  of 
a threshold acceptance criterion. Braekers et 
al. (2014) apply the deterministic annealing 
algorithm to solve a drayage operation in 
intermodal terminal. The drayage operation 
is the initial and final part of the intermodal 
transport chain which is often performed 
by road and is an example of a vehicle 
routing problem. Deterministic annealing 
or threshold acceptance for the vehicle 
routing problem and variants have been 
published in Tarantilis et al. (2004); Bräysy 

106

Mungwattana A. et al. A Real-World Case Study of a Vehicle Routing Problem Under Uncertain Demand



et al. (2008); Braekers et al. (2011); Caris and 
Janssens (2010) indicate that outstanding 
solutions could be obtained by applying a 
deterministic annealing algorithm. The 
conceptual idea of threshold accepting value 
has been initiated by Dueck and Scheuer 
(1990). This setting is used for determining 
acceptance criteria to obtain a result. When 
a neighbor solution is produced, its fitness 
value is compared with the one of the current 
solution. A new solution dominates the 
current one and is accepted to replace the 
current solution if one of two criteria are 
satisfied as following; 1) it  improves the 
objective function or 2) its value is smaller 
than a deterministic threshold accepting 
setting, is satisfied.

In this research, an adapted deterministic 
annealing algorithm hybridized with three 
search operators (DA-HSO) is modified from 
the scheme as proposed in Caris and Janssens 
(2010). After the initial solution is generated, 
the next step is to add number of available 
vehicles and the number of available driver 
constraints. An obtained result is called a 
new solution, soln, or the current solution, sol, 
and also the best solution, solb, is kept. Three 
inter-route search operations are applied to 
randomly search for a new candidate at each 
iteration. The running loop is terminated 
when the maximum number of iterations is 
reached. Similar to the simulated annealing 
algorithm (SA), a move that reduces the cost 
function is always accepted. The acceptance 
rule makes the original simulated annealing 
procedure differ from the deterministic 
annealing algorithm (DA). In DA as proposed 
by Caris and Janssens (2010), the solution is 
accepted if ∆E = C(soln) – C(sol) is less than 
a deterministic threshold value, temp. It is 
not necessary to make use of probabilies or, 
by this, random decisions are avoided. The 
temperature parameter, temp, is set to the 

maximum temperature, tempmax when starting 
the deterministic annealing scheme. It means 
that the procedure is allowed to accept worse 
candidate solutions in the beginning of the 
algorithm.

Three inter-route search operators are 
implemented for the inside loop of the 
procedure and are executed repeatedly. A 
new solution obtained for these sequencing 
moves, C(soln), is compared with the current 
cost value C(sol). If C(soln) is less than C(sol), 
then the solution is set automatically to the 
best solution; i.e. solb = soln. In addition, 
the record of the iteration which found the 
improvement, iterimp , is updated as equal 
to the current iteration number, iter. In the 
case that the new solution is worse than 
the existing, the current temperature is 
checked. If the current temperature is less 
than or equal to zero and the solutions have 
found no improvement over or equal to the 
maximum setting; i.e. iter – iterimp ≥ nno-imp, 
then the current solution is restarted from 
the best solution. In each iteration that a new 
candidate cannot improve the cost function, 
the temperature is reduced by a small value; 
temp = temp - ∆temp. The optimal solution is 
reached if the cooling is sufficiently slow. 
After that, resetting the temperature with a 
random number, rand, where rand = (0,1) and 
temp = rand∙ tempmax. The process is repeated 
until a pre-set number of improved solutions, 
nimp is achieved. The overall process of DA-
HSO is illustrated in Figure 1.

Based on t he fact t hat uncer ta int ies 
are inherent in the real-world business 
environment, one of the major issues that 
the case study company faces is to make the 
decisions under the situations of changes 
in demand. The customers may request to 
add a supplementary quantity to deliver, 
reduce the required quantity, or cancel 
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the order. The solution which has been 
decided, based on the initial plan under 
a certain input data set, is optimal for 
one situation. But such a solution may be 
not good enough for other realizations in 
case demand changes. In this study, both 

methodologies, GA-HSO and DA-HSO, are 
extended by adding a third phase in order 
to generate a robust solution. This phase 
aims to get a reasonable outcome that can 
hedge against the considered uncertain 
environments. 

• Construct initial solution by 
removing number of 
available vehicle fleets and  
driver constraints.

• Find new solution which can 
üüüüü=üüüüüü

• This solution is set as soln
and solb.

• Start a deterministic 
annealing algorithm 
hybridized search operators 
(DA-HSO)

• Set thr = thrmax and iterc = 0

• Find feasible solution, soln
where all constraints are 
satisfied by executing 
üüüüüüüüüüüü
‘Elimination’ operators
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thr ≤ 0 and 
iter - iterimp ≥ nno-imp

?

Y

N

Rep.

A

iter = nimp
?

Stop Rep.

A

Fig. 1. 
The Adapted Deterministic Annealing Algorithm Hybridized with Three Search Operators (DA-HSO)

The target of the first two steps of both 
the adapted genetic algorithm and the 
determinist ic anneal ing scheme is to 
minimize the total cost. A produced solution 
is stored in a table, called the optimal 
solution set matrix. After finishing the run 
for the first scenario, the program reactivates 
from the beginning step to seek another 
solution for the next scenario using different 
input parameters of the customer demand 
set. The step sequence is iterated until the 
solutions for all scenarios are obtained. The 
solutions which are collected in the optimal 
solution set matrix are recalled to find the 

robust solution by means of the minimax 
approach. This approach of Kouvelis and 
Yu (1996) has proven to be a great success 
in many research studies such as Manisri et 
al. (2011), Janssens et al. (2015), Soonpracha 
et al. (2014), Soonpracha et al. (2015), Wang 
et al. (2017), etc. The absolute robustness 
measure is one of the minimax decision 
making models that are used to minimize 
the objective function, which is the total cost 
in this problem, among all feasible decisions 
over all realizable input data scenarios. 
The diagram of the overall approach is 
demonstrated in Figure 2.

108

Mungwattana A. et al. A Real-World Case Study of a Vehicle Routing Problem Under Uncertain Demand



Table 1
Total Cost, Percentage Deviation (% dev), and Computational Runtime (Avg RT) of GA-HSO and 
DA-HSO Method Against Company’s Knowhow Method (K-method) 

Pr
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riv

er
s

To
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l t
on

-d
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(sec)

Total
Cost 

(*105)
% dev ∆

GA (%)
Avg RT,

(sec)

Total
Cost 

(*105)
% dev ∆

DA (%)
Avg RT,

(sec)

1 20 1,857 1.71 1,800 1.68 0.6 -1.7 13 1.71 0.0 -0.1 15
2 20 1,835 1.65 1,800 1.59 0.2 -3.3 12 1.63 0.0 -1.2 13
3 15 992 0.97 1,800 0.97 0.0 -0.2 10 0.97 0.0 -0.2 11
4 14 1,477 1.31 1,800 1.29 0.0 -1.6 12 1.29 0.0 -1.6 13
5 18 1,543 1.39 1,800 1.38 0.1 -0.3 11 1.39 0.0 -0.1 12
6 18 1,579 1.36 1,800 1.36 0.0 -0.0 10 1.36 0.0 -0.0 12
7 18 1,463 1.27 1,800 1.27 0.1 -0.2 10 1.27 0.0 -0.1 13
8 19 1,676 1.56 1,800 1.42 0.1 -8.6 11 1.45 0.0 -7.0 13
9 20 1,429 1.34 1,800 1.31 0.0 -2.5 11 1.31 0.0 -2.5 12

10 11 745 0.70 1,800 0.69 0.0 -1.2 12 0.69 0.0 -1.2 11
Avg. 1,800 0.1 -2.0 11 0.0 -1.4 13
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Phase
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Start

Fig. 2. 
Robustness Decision Making
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A f ter t he robust resu lt i s obta i ned, 
it s per for mance is eva luated by t wo 
measurement indicators: (1) the extra cost 
ratio and (2) the unmet demand ratio. These 
two indicators have been proposed by Sungur 
et al. (2008). The extra cost ratio (ex) can 
tell us on the increase of the total cost of the 
robust solution against the optimal solution 
obtained by the deterministic approach. 
The unmet demand ratio (u) suggests the 
relation between the fixed input data set 
of the customer demands and the realistic 
ones which can be faced in the dai ly 
routines. These performance indicators 
are recommended for the practitioners as 
tools for final decision making. If the total 
cost of the robust outcome is reasonable 
but can avoid the potential loss due to 
unexpected changes in demands, then it 
guarantees that the solution robustness is 
good enough as being the answer to cover 
all realized scenarios. The formulas of both 
ratios are shown in formulas (2) and (3). The 
notation of ‘max Ud’ refers to the maximum 
uncertain demand value and Σdi

o refers to the 
total demand of all customers which belong 
to the originally planned data.

	 (2)

	 (3)

4. Computational Results

In this study, two algorithms, GA-HSO and 
DA-HSO, are proposed to find a sufficiently 
good solution for a real-world problem case 
when dealing with several constraints under 
uncertain demand. The problem set contains 
thirty customers and a single depot. All 
customers and depot are located in the same 
industrial estate. The commodities can be 
divided into two groups; i.e. a palletized 

product and a bulk product. The palletized 
product contains various types of plastic 
resins which are packed in various sizes of 
big bags and placed on the pallets. The bulk 
product contains similar types of the first 
commodity type, but they are kept in silos. 
Two main types of trucks with different 
capacities are assigned to serve both types 
of commodity.

The own vehicle f leet consists of seventeen 
semi-trailers and seven bulk trucks. For the 
bulk product, a specific transfer system is 
required to feed the product into a truck 
tank. Such a particular unit is mounted on 
a bulk truck. Therefore only a bulk truck 
can serve the bulk product. The semi-
trailer can be separated into two different 
parts consisting of a two-axle and a three-
axle chassis. These types of trailers can be 
allocated to transfer the palletized products 
to the customers, but cannot carry the bulk 
product. Furthermore, the loading capacity 
of the three-axle trailer is larger than the 
two-axle trailer. In real practice, however, 
full capacity mostly cannot be utilized 
due to other restrictions such as container 
dimension or stacking conditions. Therefore, 
the company makes agreements with the 
customers regarding the courier conditions 
and determines the limitation of payload for 
each vehicle class.

Sometimes vehicles are not available, for 
example due to maintenance service. In 
this study, such situation is considered 
negligible. However, an additional restriction 
in this research is related to the number of 
truck drivers. The maximum number of 
drivers under a planning-time horizon is 
equal to twenty, but may be less than the 
full headcount  because of vacation plans. 
The company drivers operate each type 
of the firm’s trucks. In the case that no 
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vehicle truck or driver are available, the 
contracted outsource service providers 
form the alternative source to offer service 
with unlimited resources. Furthermore, 
transportation activity may face fluctuations 
in travel time but this study makes use of 
average cycle times to represent the travel 
time covering the variation due to unknown 
disturbances. T he log ist ics prov ider 
determines the set of cycle times based on 
historical records of each round trip to each 
customer including unloading and loading 
activities and unexpected events that may 
occur during transportation. Each vehicle 
of both the company and the third party 
logistics provider starts from the depot, 
travels to only a single customer place, and 
then returns to the starting point. The nature 
of all customer demands in this study is larger 
than the capacity of a single truck. Therefore, 
the requested delivery quantity can be split 
in more than one time. However, the planner 
must manage the route assignments to fulfill 
the customer demands and satisfy both hard 
time windows and drivers’ working hours 
constraints.

The GA-HSO and DA-HSO procedures are 
coded in MATLAB. Ten different data sets 
are run on an Intel(R) Core(TM) i5-3337U 
CPU@1.80GHz 8.00GB-R AM. Table 1 
illustrates the comparison of output solutions 
among both developed methods and the 
company’s know-how method (K-method). 
The table makes use of the expected demand 
of the initial planning and reports the 
minimal total transportation cost in which 
the following conditions are considered: (1) 
hard time windows, (2) a mix of limited and 
unlimited number of heterogeneous fleet, (3) 
a limited number of drivers, (4) split delivery, 
(5) multiple trips, and (6) capacitated vehicle. 
According to the planner’s approximation, 
the average computational run time (Avg 

RT) of the K-method is about thir t y 
minutes per problem set. The Avg RT of 
GA-HSO and DA-HSO are obtained from 
the programming report table with 10 runs 
per problem set. They are equal to 11 and 
13 seconds on average. The column on the 
percentage deviation (%dev) suggests that 
both proposed algorithms are able to produce 
a robust solution. The output of each run 
does not deviate much from each other when 
the setting parameters of (1) the permutation 
selection in the evolution operation of the 
adapted genetic algorithm and (2) the setting 
temperature in the modified deterministic 
annealing algorithm, are randomized. 
Furthermore, the di f ference in costs 
(expressed as a percentage) between the 
K-method and the new methods are denoted 
by ∆GA (%) and ∆DA (%), when comparing 
the GA-HSO and the DA-HSO against the 
K-method, respectively. The application 
of  GA-HSO and DA-HSO for solving the 
problems helps the business owner to save 
on the transportation cost about 2% and 
1.4%, respectively.

Although the customer demand is known 
before the planning process, demand 
uncertainties regularly appear in real 
life. This study aims to handle the real 
situations of the practical cases and assumes 
that three scenarios can cover all possible 
situations. The f irst scenario (Scen-1) 
uses the original set of customer demand 
information. The second scenario (Scen-2) 
is simulated based on the average deviation 
of the actual demand set of each customer 
along the planning period, (example shown 
in Table 2). The convex hull concept as 
proposed in Sungur et al. (2008) is applied 
in the third scenario (Scen-3), (the instance 
displayed in Table 2). Regarding the latter 
two scenarios, the independent random 
variable, , is generated from the interval 
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[-1,1] because real life situations suggest 
that the customers have actual requirements 
either more than or less than their initial 

requests. The perturbation parameter,  
is a value of random number in the range 
of (0,1).

Table 2 
Example of Uncertain Customer Demand Calculation (Scen-2 and Scen-3)

C
us

to
m

er

d 0

Scen-2 Scen-3

β α U
d 

1 β 2 β 3 α 1 α 2 α 3

1α 1d 0

β 2α 2d 0

β 3α 3d 0

Σ(
β iα id 0)

U
d 

1 120 1 0.2 139 -1 -1 0 0 0.5 0.6 0 -54 0 -54 66
2 545 0 0.8 545 -1 1 1 0.2 0.4 0.2 -24 48 24 48 593
3 100 -1 0.9 15 0 0 -1 0.8 0 0.2 0 0 -24 -24 76

The obtained solutions of each scenario are 
stored in the ‘optimal solution matrix’. The 
results in the optimal solution matrix are 
then used for finding the robust solution. The 
minimax approach is applied, which assumes 
that the solution can cover all considered 
realization scenarios. The robust solution is 
evaluated based on the absolute difference 
robustness criterion. The robust solution, 
which is minimax solution, is obtained as 
the last step of the procedure. Tables 3 and 
4 illustrate the results of one case-studied 
instance (Problem set no.1 is demonstrated 
as an example) by applying (1) the adapted 
genetic algorithm hybridized local search 
(GA-HSO) and (2) the modified deterministic 
annealing hybridized local search (DA-HSO). 
The graphical representation of the total 

costs of each scenario using GA-HSO and 
DA-HSO is shown in Figure 3. The robust 
solutions in this case study are the answer 
to scenario number 1, which belongs to the 
initial plan data set. Most customers of this 
scenario have an actual demand less than the 
original orders. Therefore, the algorithms 
suggest the solutions of the first input of 
demand sets as being the robust solution 
which can hedge against uncertainty in all 
input environments. The algorithms may 
suggest different answers if the generated 
scenarios differ from the three example cases. 
Regarding the computational runtime, the 
processing times are 13 and 15 seconds for 
GA-HSO and DA-HSO, respectively, which 
is a significant improvement when compared 
with the K-method.

0

50,000

100,000

150,000

200,000

250,000

Scen-1 Scen-2 Scen-3

(a)

Maximum cost across 3 scenarios
Minimax: Absolute robust solution

     

0

50,000

100,000

150,000

200,000

250,000

Scen-1 Scen-2 Scen-3

(b)

Maximum cost across 3 scenarios
Minimax: Absolute robust solution

Fig. 3. 
Absolute Robustness Obtained by Applying (a) GA-HSO and (b) DA-HSO
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Table 3
Absolute Robust Solution Obtained by Applying GA-HSO (Problem Set No.1 is for Example.)

No. of 
run

Maximum demand Cost
Absolute robustness

Scen-1 Scen-2 Scen-3 Scen-1 Scen-2 Scen-3
1 1,857 1,324 762 168,906 131,586 79,243 168,906
2 1,857 1,297 920 169,163 122,160 104,207 169,163
3 1,857 1,339 891 168,011 127,653 101,045 168,011
4 1,857 1,936 1,651 169,163 187,096 154,523 187,096
5 1,857 1,359 799 169,102 125,398 81,925 169,102
6 1,857 1,365 1,117 169,029 124,231 109,422 169,029
7 1,857 1,963 839 169,124 184,293 92,018 184,293
8 1,857 2,147 773 169,124 202,422 83,996 202,422
9 1,857 1,161 1,752 168,445 113,401 162,797 168,445

10 1,857 1,224 1,104 168,011 118,928 117,500 168,011
Minimax 168,011

Two performance measurements, i .e. 
the extra cost ratio (ex) and the unmet 
demand ratio (u) (see Sungur et al., 2008) 
are considered. They are applied to evaluate 
the robust solution against the solution 
obtained from the deterministic approach 
with constant demand. In this computation, 
three scenarios represent the whole situation 
of the uncertainty events which are created 
based on the risk aversion as presented in 
Table 2. Under these situations, in order to 
make use of a robust solution, no extra cost is 
incurred and the worst case can be handled 
when the demand is 20% over the expected 
plans on average. The performance indicators 

are reported in Table 5. In this case, the route 
assignment set under the solution output of 
the third or the tenth run is suggested to use 
when GA-HSO is applied for computation. In 
order to implement this route, the total cost is 
equal to 168,011 units. DA-HSO produces an 
output, which is different from the GA-HSO. 
The solution under the runs with numbers 1, 
4, 6, 7, 9, or 10 can be chosen as the robust 
routing plan with a total transportation 
amount of 170,888 units. By comparing the 
robust results between GA-HSO with DA-
HSO, the procedure of DA-HSO is able to 
produce a higher level of robustness. However, 
its cost is higher than by using GA-HSO.

Table 4
Absolute Robust Solution Obtained by Applying DA-HSO (Problem Set No.1 is for Example.)

No. of run
Maximum demand Cost Absolute robustness

Scen-1 Scen-2 Scen-3 Scen-1 Scen-2 Scen-3
1 1,857 1,449 784 170,888 140,966 88,692 170,888
2 1,857 2,286 1,234 170,888 222,938 119,785 222,938
3 1,857 1,109 1,898 170,888 109,929 178,732 178,732
4 1,857 1,426 1,379 170,888 135,133 136,292 170,888
5 1,857 1,268 1,916 170,888 126,456 185,148 185,148
6 1,857 1,194 746 170,888 114,772 88,105 170,888
7 1,857 1,134 870 170,888 115,014 95,327 170,888
8 1,857 1,990 1,448 170,888 191,742 143,664 191,742
9 1,857 1,197 941 170,888 118,574 101,824 170,888

10 1,857 1,120 887 170,888 110,291 94,591 170,888
Minimax 170,888
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Table 5
Extra Cost Ratio and Unmet Demand Ratio (Problem Set No.1 is for Example.)

Algorithm
Extra cost ratio, ex Unmet demand ratio, u

ZRobust ZDeterministic Ratio ex max Ud total do Ratio u

GA-HSO 168,011 168,011 0 2,147 1,857 1.156

DA-HSO 170,888 170,888 0 2,286 1,857 1.231

Table 6
Results of Sensitivity Test - Cost

No. of nodes Total 
demand

Total demand when 
uncertainty is taken 

into account

Solution – Expected demand Absolute Robust solution – 
Uncertain demand

GA-HSO DA-HSO GA-HSO DA-HSO

50 643 822 65,180 65,180 69,380 69,680

100 2,949 3,332 241,660 241,940 245,540 255,820

200 2,483 2,799 270,020 270,020 283,980 283,700

300 3,446 3,868 401,380 401,380 415,020 420,640

400 4,277 4,498 511,720 511,720 545,740 537,600

Table 7
Results of Sensitivity Test – Extra Cost, Unmet Demand, and Runtime

No. of nodes Total demand Unmet demand 
ratio, u

Extra cost ratio, ex Runtime (seconds)

GA-HSO DA-HSO GA-HSO DA-HSO

50 643 1.15 0.064 0.069 22 30

100 2,949 1.06 0.016 0.057 42 56

200 2,483 1.08 0.052 0.051 82 108

300 3,446 1.09 0.034 0.048 124 162

400 4,277 1.06 0.067 0.051 172 224

Average 1.09 0.047 0.055

5. Discussion and Conclusion

This research relates to a particular real-
world implementation by considering 
uncertainties in demand. Two meta-heuristic 
optimization methods based on a genetic 
algorithm and a deterministic annealing 
algorithm are presented to f ind robust 
optimal solutions. Realistic constraints are 
added to the research to make the problem 
more complex. The outcomes have been 

proven to be successf ul to produce a 
minimum transportation cost and a robust 
solution in a short computational time. 
Tables 6 and 7 illustrate the sensitivity test 
comparing GA-HSO and DA-HSO methods. 
Both procedures are limited to apply for 
solving the problem with a maximum of 400 
nodes.

In order to test the performance of the 
algorithms, all input tables are created using 
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random components. In the first scenario, 
making use of random expected demand sets, 
both the GA-HSO and DA-HSO schemes 
suggest route answers which are quite similar. 
Extra money is added when implementing the 
robust approach. Another two scenarios are 
built based on the concept of risk aversion. 
The GA-HSO procedure suggests the robust 
solution with an average which is 0.047 times 
more expensive than the optimal solution with 
certain demand. The DA-HSO algorithm 
produces a higher extra cost compared to the 
GA-HSO method. It is 0.055 times on average 
more expensive when uncertainties in demand 
are considered. The robust results are able to 
handle the unmet demand with a ratio of 1.09 
on average. When comparing the length of the 
computation time, the GA-HSO algorithm 
always produces the outcomes faster than the 
DA-HSO method. Both techniques spend a 
very short computational runtime even when 
the 400-node case is being tested. Therefore, 
the strong benefits for the use of both proposed 
techniques is to advise the sufficiently good 
route plans under an uncertain demand 
situation and to shorten time consumed in 
the routing planning activities.
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