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Abstract: Based on the recent Safety Fact Sheet, highway traffic accidents are becoming one of 
the leading causes of death. The main goal of this work is to study the correlation, impacts and 
the association of several highway pavements and geometric design elements, the prevailing 
traffic characteristics and environmental conditions on severe traffic crashes occurred over the 
five years period from 2010 to 2014 on selected two and four-lane rural and urban highways 
in the state of Alabama. Several state urban and rural highways with homogeneous variances, 
equal mean values and similar distributions of the crashes are identified and combined to 
form crash datasets. The significance of the initial categorical variables on the likelihood 
of generating severe crashes on dry and wet pavement surfaces are evaluated. The negative 
binomial regression model is used to estimate the observed crash data and identify the principal 
variables associated with the crashes.  
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1. Introduction

Based on the recent report released by the 
National Safety Council (NSC), the total 
motor vehicle-related fatalities in the United 
States in 2014, 2015 and 2016 were 35,398, 
37,757 and 40,200 respectively (NSC, 
2017). The three years annual increase 
in the number of death due to traf f ic 
accidents from 2014 to 2016 were about 7 
and 6 percent respectively. In 2006 alone, 
the estimated cost of traffic crash-related 
property damages, injuries, and fatalities 
were estimated to be $432.5 billion, which 
again was 12 percent higher than the 2015 
estimate. The report also indicated that 
in the state of Alabama, the motor-vehicle 

related fatalities for the three years period 
from 2014 to 2016 were 821, 846, and 1,044 
respectively, with 23 percent increase from 
the year 2015 to 2016 making Alabama one 
of the six states with a record of over 20 
percent increase in motor-vehicle deaths 
from the year 2015 to 2016. The highest 
increase in fatalities from 2015 to 2016 was 
reported to be 34 percent in New Mexico, 
and the highest decrease in death was 23 
percent in Wyoming. If we see the rate of 
fatalities across the ten regions of the United 
States categorized by the National Highway 
Traffic Safety Administration (NHTSA), 
from 2014 to 2015, an increase in fatalities 
was reported in nine out of the ten NHTSA 
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Regions. The only region whereby a decrease 
in fatalities was reported was Region 6 (NH, 
OK, TX, LA, and MS). The highest increase 
in fatalities (about 20 percent) was reported 
in Region 10 (WA, OR, ID and MT) followed 
by 14 percent increase in a fatality in Region 
4 (AL, TN, GA, SC, FL) (NHTSA, 2016).  
The 2015 traffic fatalities in Alabama was 
reported to be 849, which was four percent 
higher than 2014. The fatalities rates per 
100,000 population; 100,000 licensed drivers 
and 100 million VMT in Alabama and the 
national statistics for the United States 
were 17.47, 21.73, 1.26 and 10.92, 16.09, 
1.13 respectively (NHTSA, 2017). In 2014, 
the national fatalities and injury per 100 
million VMT were 1.08 and 7.7 respectively 
(NHTSA, 2014).

2. Literature Review

Several methodological approaches were 
adopted to study the effects of factors 
associated with crash severity on highways. 
Using negative binomial regression, (Hadi et 
al., 1995) derived a mathematical model to 
estimate crashes on Florida roadways. The 
selected predictive variables were mainly 
highway cross-section design elements 
including lane, shoulder and median width, 
median type, speed limit, type of friction 
course (open or dense graded) and AADT. 
The impacts of weather and environmental 
factors such as rain and lighting were not 
included in the analysis. Injury, fatal and 
total crash rates were used as dependent 
variables. The crash data of these three 
dependent variables were divided into nine 
categories, and hence multiple models were 
derived for each dependent variable. The 
study concluded that: (1) for all highway 
sections, higher crash frequencies were 
associated with higher AADT values, (2) the 
pavement friction course was not significant 

to the occurrence of a crash, and (3) the 
two major predictors of fatal crashes in their 
study area were AADT and section length. 
Ordered probit models were used by Abdel-
Aty (2003) to study drivers injury severity 
levels for three facility types including 
intersect ion, tol l plazas and roadway 
sections for central Florida area over the 
two years period ranging from 1996-1997. 
The variables included were drivers’ age 
and gender, speed, weather condition, type 
of vehicle (passenger car, van, light truck), 
seatbelt use, alcohol use, lighting condition, 
rural versus urban section, and peak period. 
The results on the roadway sect ions 
indicated alcohol use, weather condition, 
and peak period were not significant and 
female drivers and older drivers (over 65 
years of age) had a higher probability of 
severe injuries. The study also found that, 
as compared with urban sections of the 
roadways, there was a higher probability of 
injury severity level during daylight in rural 
areas as compared with urban sections of 
the roadways. Likewise, (Krull et al., 2000) 
reported the higher probability of rollover 
crashes in rural areas than urban sections 
of the highways. They applied a logistic 
regression model to examine the effects of 
rollover crashes on driver injury severity 
levels (fatal, incapacitating injury and non-
injury) for Michigan and Illinois. The study 
concluded that in both of these states, injury 
severity level increased with alcohol use, 
failure to use a seatbelt, and with an increase 
in posted speed limits. The findings also 
suggested that higher probabilities of severe 
injuries were observed during daylight, dry 
pavement and rural section as opposed to 
a dark condition, wet pavement surface 
condition and urban sections of the roadway.

(Caliendo et al., 2007) applied Poisson, 
negative binomial and negative multinomial 
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regression techniques to model crash 
frequency on four-lane rural roads in 
Italy, using five years crash data collected 
from 1999-2003 on 46.6 km (29 miles) of 
highway segment both during dry and wet 
pavement conditions, with AADT values 
ranging from 17,600 to 47,400. The authors 
proposed separate models for curve and 
tangent sections of wet and dry pavement 
surface conditions of the highways. The 
terms included in the study were AADT, 
segment length, sight distance, curvature, 
side friction coefficient, longitudinal slope, 
and rainfall. The results identified the 
presence of junctions, segment length, and 
AADT were the main factors contributed 
to severe crashes. When pavement surface 
condition was included as a variable, their 
model showed that wet pavement condition 
was found to be a statistically significant 
variable, and the number of crashes occurred 
during wet pavement condition increased 
by a factor of 2.32 for tangent sections as 
compared with the crashes on dry pavement 
surfaces. This result was different from 
the findings of (Krull et al., 2000), which 
suggested more crashes were likely to occur 
on dry pavement surface conditions. 

The 2008 and 2009 traffic crash data on 
Texas highways, were used by (Li et al., 
2013), to analyze the impacts of pavement 
conditions rating including pavement 
distress, ride quality (smoothness), skid 
resistance, and International Roughness 
Index (IRI), on highway crash severity. Based 
on Texas Department of Transportation, the 
IRI scores between 1-95, 96-170 and 171-950 
in/mi are considered very good, fair and poor 
respectively. The data analysis approach 
mainly used in the crash analysis was Pearson 
Chi-square of the crash severity outcomes 
and the predictor variables associated with 
pavement surface conditions followed by 

multiple comparison tests using Tukey-
Kramer and Fisher’s Least Signif icant 
Difference tests. The results of the study 
indicated that the impacts of pavement 
conditions were insignificant on freeways 
and were more significant on crash severity 
mainly when driving at high-speed limits 
on non-freeway multilane highways, during 
daylight on dry pavement surface conditions. 
(Oňa et al., 2011), and (Wu et al., 2014); 
however, reported the influence of lighting 
condition on severe crashes differently. On 
their work on the analysis of injury and fatal 
crashes on rural highways, (Oňa et al., 2011) 
showed that driving with no street lighting 
was associated with severe injury and fatality 
as compared with driving during daylight. 
(Wu et al., 2014) also reported that driving 
during dark roadway conditions increased 
multivehicle crash driver fatality by about 
113 percent as compared with daylight 
condition. 

Using ordered-probit models and a paired-
comparison of the crash on similar highway 
segments, one with elevated speed limits 
with another stretch where the speed limits 
were kept the same, (Renski et al., 1999) 
examined the effects of posted speed limit 
increases on single-vehicle crash severity 
on Interstate highways in North Carolina. 
The results of the study reported that 
increasing posted speed limits from 65 to 
70 mph (~105 to 123 km/hr) on Interstate 
highways in North Carolina did not show 
any significant impact on crash severity. 
(Roh et al., 2017) assessed the impacts of the 
percentage of heavy vehicles, f low rate, and 
variations in the average speed of traffic on 
four, six and eight-lane highways in Seoul, 
Korea over a period of two months. The 
results of the study indicated that the three 
highways considered show characteristics 
differences. For four-lane highways, as the 
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f low rate increases and the percentage of 
trucks increases from zero to 35 percent, the 
average traffic speed reduction increases. 
Applying logistic regression models on three 
years crash data collected from 31 different 
highways in Canada, (Usman et al., 2016) 
studied the factors contributing to injury 
severity crashes. Based on the report, use 
of alcohol increased the likelihood of major 
injury and fatality by about 0.8 percent. 

3. Methodology

The five years severe injury and fatal traffic 
accident data ranging from 2010-2014 were 
extracted from Critical Analysis Reporting 
Environment (CAR E) managed by the 
Center for Advanced Public Safety (CAPS) 
at the University of Alabama.  The data 
include severe crashes occurred on two and 
four-lane urban and rural state highways on 
dry and wet pavement surfaces. Since fatal 
crashes were relatively few, severe injury 
and fatal crash records were combined 
to form severe crashes. The association 
of thirteen explanatory variables on the 
likelihood of occurrences of severe crashes 
on the selected highways was examined. 
The variables included in the analysis were, 
segment length, AADT, TADT, IRI, rut 
depth, cross-slope, grade, macrotexture, 
posted speed limit, a number of lanes (two 
or four), rural or urban designation of the 
segments, lighting, and weather. Among 
these, the variables that were not statistically 
significant at 5% level were excluded from the 
final models. The descriptive statistics of the 
crash data and some of the variables used are 
presented in Table 1. The severe crash rate 
(CR) expressed as crashes per 100 million 
vehicle- miles of travel for each segment is 
calculated using the corresponding AADT 
and vehicles-miles-traveled (VMT) as Eq. 
(1) and Eq. (2)  (FHWA, 1990): 

 (1)

and

 (2)

where, C =  crash count for the segment; N 
= number of years of data; and L = length 
of roadway segment.

Several earlier studies confirmed that 
multiple linear regression (MLR) approaches 
for modeling traffic safety is unsuitable. 
The MLR models are formulated based on 
the assumption of normality and equality 
of variances. To determine the statistical 
approached to be adopted in this work, the 
normality of the severe crash data was tested. 
Both graphical and numerical techniques 
were used to check the normality of the 
severe crashes for individual routes and the 
combined dataset. For numerical analysis, 
Kolmogorov-Smirnov and Shapiro-Wilk 
tests were used. After testing the normality 
of the individual crash data recorded on 
each highway segments, multiple non-
parametric statistical comparison tests 
including homogeneity of variances, equality 
of means, and similarity in the distributions 
of the crash data of the selected routes in 
Alabama Department of Transportation 
(ALDoT) highway systems were examined 
using Levene’s test, Welch’s test and Kruskal-
Wallis (K-W) tests respectively. If the results 
of these test are not statistically significant 
(α > 0.05), we have no evidence to reject 
the null hypothesis, which suggest that the 
mean (Welch’s test), the variances (Levene’s 
test) and distribution of crash rates (K-W 
test) are the same across the categories of 
the highways selected. However, if the tests 
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result in p-values < 0.05, it implies that there 
is strong evidence to suggest that the crash 
rates for at least one of the highways are 
statistically significantly different from the 
others. To identify which highway or group 
of highways are different from the others, a 
grouping of the individual severe crash data 
and multiple comparisons were performed 
using Games-Howell post hoc test. The routes 
with homogeneous variances, equal means, 
and similar distributions were combined 
to form severe crash datasets occurred on 
dry and wet pavement surfaces. Next, the 
association between the crash dataset and 
the candidate explanatory variables were 
analyzed using negative binomial model, 
given by Eq. (3):

 (3)

where μ, is the mean of the distribution 
(Wood, 2002; Lord and Mannering, 2010; 
Oh et al., 2006). 

To determine the signi f icance of the 
categorical variables including the urban-
rural designation of the segments, pavement 
surface condition (dry or wet), lighting (light 
or dark), number of lanes (two or four), 
on the probability of occurrence of severe 
crashes and decide whether these variables 
need to be included in the regression models 
or not, statistical pairwise comparison of 
the crash rates across the categories were 
performed. These include homogeneity of 

variances, equality of means and similarity 
in distribution of the severe crashes across 
the categories. If the crash rates across 
the categorical variables are found to have 
a significant difference from each other, 
the variables will be dummy coded and 
considered as potential explanatory variables. 
To identify the key predictors of the initial 
model, both step-wise and best subset 
regression models were performed using 
crash rates on dry, wet and the combined 
data set as independent variables. In this 
study, step-wise and best subset regression 
approaches were also used for preliminary 
analysis and evaluation of the candidate 
explanatory variables. The statistically 
significant predictors identified by the MLR 
approach were used as input variables for 
Poisson and negative binomial regression 
models (not shown). Poisson regression 
model assumes (Wood, 2002) that the 
expected number of crash rate (the mean) 
is equal to the variances (equi-dispersed). 
Test for over-dispersion performed on all the 
severe crash dataset across the various state 
highways (dry, wet, aggregate) was found to 
be statistically significant, indicating that the 
dataset was all over-dispersed. This indicates 
Poisson regression model is not suitable to fit 
the data. However, to compare improvements 
of the negative binomial model, as compared 
with Poisson models evaluate the goodness-
of-fit tests Akaike’s Information Criterion 
(AIC), Bayesian Information Criterion 
(BIC), Log Likelihood, and Deviance values 
are used.
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Table 1
Descriptive Statistics of Severe Crashes and the Variables

Variable
Dry pavement crashes, 

N=2097
Wet pavement crashes, 

N=2478 Total severe, N=3344

Mean St.Dv. Min. Max. Mean St.Dv. Min. Max. Mean St.Dv. Min. Max.
Crash rate 21.53 35.97 0 172 2.996 0.213 0 75 6.32 15.22 0 76
Crash count 0.89 1.66 0 19 0.13 0.01 0 5 0.36 1.01 0 12
Seg. Length 1.11 1.24 0.001 9.54 1.13 1.28 0.001 10.49 1.09 1.25 0.001 9.54
AADT 11975 11274 360 113460 11240 12447 360 113460 12058 12326 360 113460
TADT 11.48 6.84 1 40 10.95 6.52 1 43 11.41 6.64 1 40
Cross Slope -7 7 -7 7   -7 7
Grade -6.8 8 -7.1 10   -7.1 8
IRI 87.25 77.52 25 700 93.47 83.26 25 700 89.17 78.51 25 700
Rut depth 0.18 0.084 0 0.67 0.18 0.09 0 0.67 0.18 0.08 0 0.66
Macrotexture 0.54 0.501 0 11.05 0.55 0.54 0 11.05 0.55 0.56 0 11.05
Speed Limit 52.48 9.51 15 70 54.56 9.77 25 70 53.95 9.79 15 70

*N=Number of segments

4. Results and Discussions

A mong t he s i x te en s t ate  h ig hw ay s 
selected for the study, the majority of 
them appeared to have mean values which 
were not significantly different. Tests of 
homogeneity of variances and similarity 
in distributions of the severe crash data 
across most of the highways were not 
statistically significantly different as well. 
These were determined from the results 
of Welch’s, Levene’s and Kruskal-Wallis 
tests followed by Games-Howell post-hoc 
pair-wise comparison tests. The routes 
combined (shown in Tables 2-4) were all 
found to be statistically non-significant at 
a level of α=0.05. Table 2 and 3 show the 
list of eleven and thirteen homogenous 
routes combined to form severe crash data 

set occurred on dry and wet pavement 
surfaces respectively. To combine the dry 
and wet pavement crashes, the common nine 
routes from each group were selected and 
dummy coded to categorize the dry and wet 
pavement severe crashes forming a single 
crash data for the aggregate dataset (Table 4). 
The dummy coded variables are used as the 
categorical variables in the analysis. Based 
on both tests of normality (Shapiro-Wilk and 
Kolmogorov-Smirnov), all the crash rates 
at the individual routes and the aggregate 
data were not normally distributed at a 
significance level of α = .001. Similarly, tests 
of normality and the descriptive statistics 
of the data across the categorical variables 
were performed for severe crashes occurred 
on dry, wet pavement surfaces and aggregate 
data sets and presented in Tables 5, 6 and 7 
respectively.
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Table 2
Tests of Normality and Descriptive Statistics of the Severe Crash Rates occurred on Dry Pavement 
Surfaces for the Selected Eleven State Highways

Route ID ǂN Mean  Sd. Dv.
Normality Test

Skewness Kurtosis *Sig.
AL 001 385 27.01 40.07 1.611 1.898 0.001
AL 002 158 21.08 35.32 2.161 4.676 0.001
AL 003 387 18.93 33.94 2.289 5.480 0.001
AL 005 153 18.90 36.21 2.192 4.310 0.001
AL 006 164 18.08 29.65 1.938 4.024 0.001
AL 008 130 19.68 31.69 1.677 2.065 0.001
AL 010 127 19.34 36.23 2.035 3.763 0.001
AL 012 171 25.26 38.92 1.921 3.439 0.001
AL 013 191 20.08 30.91 2.068 4.814 0.001
AL 014 125 22.70 39.01 1.789 2.192 0.001
AL 015 106 20.98 40.02 1.812 2.114 0.001

¥Combined 2097 21.53 35.97 1.958 3.480 0.001

*Significance level for both Shapiro-Wilk and Kolmogorov-Smirnov tests.
 ¥All routes combined
Number of segments 

Table 3
Tests of Normality and Descriptive Statistics of the Severe Crash Rates occurred on Wet Pavement 
Surfaces for the Selected Thirteen State Highways

Route ID N Mean Std. Dev.
Normality Test

Skewness Kurtosis Sig.
AL 001 423 3.56 10.94 3.955 17.049 0.001
AL 003 363 1.94 8.40 5.426 32.945 0.001
AL 004 98 2.09 10.20 5.570 32.867 0.001
AL 005 153 3.41 10.74 3.494 11.893 0.001
AL 006 178 3.06 10.16 3.984 16.916 0.001
AL 007 176 4.27 13.04 3.217 10.025 0.001
AL 008 141 3.16 11.05 4.660 24.564 0.001
AL 009 205 2.38 10.55 5.073 26.826 0.001
AL 010 130 3.26 11.84 3.975 16.067 0.001
AL 013 188 3.09 8.49 3.096   9.640 0.001
AL 014 125 1.85 7.73 5.266 31.660 0.001
AL 015 104 2.79 11.47 4.015 14.868 0.001
AL 017 194 3.78 13.07 3.746 13.685 0.001

Combined 2478 3.00 10.60 4.213 18.777 0.001
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Table 4
Tests of Normality and Descriptive Statistics of the Aggregate Severe Crash Rates occurred on Both Dry 
and Wet Pavement Surfaces for the Selected Nine State Highways

Route ID N Mean St. Dv.
Normality Test

Skewness Kurtosis Sig.
AL 001 739 7.07 15.71 2.468 5.479 0.001
AL 003 714 6.17 15.12 2.641 6.368 0.001
AL 005 282 4.61 12.63 3.085 9.230 0.001
AL 006 327 6.97 15.94 2.410 5.087 0.001
AL 008 258 7.14 16.69 2.550 5.827 0.001
AL 010 240 5.54 15.79 2.934 7.619 0.001
AL 013 362 8.02 15.72 2.048 3.450 0.001
AL 014 231 4.84 13.08 3.139 10.244 0.001
AL 015 191 3.87 13.97 3.587 11.655 0.001

Combined 3344 6.32 15.22 2.616 6.213 0.001

Table 5
Tests of Normality and Descriptive Statistics of the Severe Crash Rates occurred on Dry Pavement 
Surfaces across the Categorical Variables for the Selected Eleven State Highways

Variable N Mean St. Dv.
Normality Test

Skewness Kurtosis Sig.

Rural/Urban
Rural 1112 22.18 36.65 1.906 3.175 0.001
Urban 985 20.79 35.19 2.021 3.880 0.001

No. of Lanes
Two 1090 21.82 38.59 1.892 2.861 0.001
Four 1007 21.21 32.91 2.016 4.264 0.001

Lighting
Dark 732 20.75 35.51 1.975 3.586 0.001
Light 1365 21.95 36.22 1.951 3.439 0.001

Weather
Cloudy 422 19.78 34.97 2.197 4.661 0.001
Clear 1675 21.97 36.21 1.904 3.239 0.001

Table 6
Tests of Normality and Descriptive Statistics of the Severe Crash Rates occurred on Wet Pavement 
Surfaces across the Categorical Variables for the Selected Thirteen State Highways

Variable N Mean St. Dv.
Normality Test

Skewness Kurtosis Sig.

Rural/Urban
Rural 1513 3.10 10.79 4.078 17.430 0.001
Urban   965 2.83 10.29 4.453 21.319 0.001

No. of Lanes
Two 1307 3.16 11.38 3.987 15.992 0.001
Four 1171 2.81   9.66 4.500 23.037 0.001

Lighting
Dark   884 3.30 10.62 3.795 15.219 0.001
Light 1594 2.83 10.59 4.455 20.901 0.001

Weather
Rainfall 1872 2.99 10.57 4.214 18.853 0.001
Normal   606 3.02 10.69 4.220 18.709 0.001
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Table 7
Tests of Normality and Descriptive Statistics of the Aggregate Severe Crash Rates occurred on Both Dry 
and Wet Pavement Surfaces across the Categorical Variables for the Selected Nine State Highways

Variables N Mean St. Dv.
Normality Test

Skewness Kurtosis Sig.

Surface 
Cond.

Dry 1600 11.79 20.02 1.564   1.230 0.001
Wet 1744    1.31   4.88 4.104 17.102 0.001

Rural/Urban
Rural 1911    6.08 15.06 2.710    6.755 0.001
Urban 1433    6.65 15.43 2.501    5.580 0.001

No. of Lanes
Two 1679    5.64 15.23 2.814    7.059 0.001
Four 1665    7.01 15.18 2.433    5.496 0.001

Lighting
Dark 1163    6.34 15.50 2.661    6.416 0.001
Light 2181    6.31 15.07 2.590    6.098 0.001

Weather
Rainfall 1370    1.49   5.67 4.837  30.137 0.001
Normal 1974    9.67 18.51 1.881    2.442 0.001

To determine whether the severe crash 
rates across the categor ica l var iables 
were significantly different or not, tests 
of equal ity of means, homogeneity of 
variances, and similarity in distributions 
across the categories were performed (Table 
8-10). For the crash rates which were not 
statistically significantly different with 
respect to Welch’s, Levene’s and Kruskal-
Wallis tests, the results suggested that 
the particular categorical variable did not 
have any inf luence on the likelihood of 
the occurrences of severe crashes on these 
highways. For those significantly different, 
the results suggested that the variables need 
to be retained, dummy coded and used 
as categorical variables in the statistical 
models developed to fit the severe crash 
data. From Table 8, we can see that except 
for the distribution of the crash across 
the number of lanes (p-value=.001), the 
mean, variances, and distributions of severe 
crashes on dry pavement surfaces across the 
categories of rural-urban designation of the 
segment, number of lanes, lighting and the 
weather conditions were not significantly 
different.  

For wet-weather related severe crashes (Table 
9), the distributions of the data across the 
number of lanes and lighting conditions were 
found to be statistically significant (similar 
in distribution) at a level of p-value=0.049 
and p-value=0.037 respectively. However, 
the means and variances of the severe crashes 
across both categories were not found to 
be significantly different. These were also 
confirmed by Games-Howell post-hoc tests 
at p-value=0.417 and 0.288 for the number of 
lanes and lighting conditions. Across urban-
rural designations of the segments, as well 
as the weather conditions (rainfall versus 
normal weather), all the tests confirmed 
that there were no significant differences in 
means, variances, and distributions of the 
severe crash data across these categories. 
The results in Table 8 and 9 suggest that 
the use of these four categorical variables 
in formulating a mathematical relationship 
between the severe crashes occurred on 
dry and wet pavements will turn out to be 
statistically insignificant. For the sake of 
completeness, all the variables listed in the 
methodology section of this paper were used 
in formulating negative binomial models.  
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The results of a similar analysis performed 
on the aggregate data consisting of the 
severe crashes occurred both on dry and wet 
pavement surfaces is shown in Table 10. Here 
the means, variances and the distributions of 
the severe crashes across the categories of the 
pavement surfaces (dry versus wet), number 
of lanes and weather conditions (rainfall 
versus normal weather) were all different at 
a significance level of 0.05. These warrants 
dummy coding and inclusion of these 

categorical variables in the statistical model. 
Again for the sake of completeness, and to 
further confirm the level of significances, all 
the variables listed in the methodology section 
were used in formulating negative binomial 
models for the aggregate data. Interestingly, 
for the aggregate dataset, the number of 
lanes and pavement surface condition were 
found to be key variables associated with the 
likelihood of occurrences of severe crashes 
at a significance level of 0.0001 (Table 11).

Table 8
Test for Equality of Mean, Homogeneity of Variances, And Similarity in Distribution of the Dry 
Pavement Severe Crashes across the Categorical Variables

Variables Levene’s 
Test

Welch’s 
Test

Kruskal-Wallis 
Test

Games-Howell 
Test

Rural/Urban
Test Stat. 0.780 0.790 0.340 0.890
P-Value 0.376 0.375 0.559 0.375

No. of Lanes
Test Stat. 0.150 0.160 12.55 0.400
P-Value 0.694 0.692 0.001 0.692

Lighting
Test Stat. 0.530 0.540 1.120 0.730
P-Value 0.466 0.464 0.291 0.464

Weather
Test Stat. 1.240 1.290 1.100 1.140
P-Value 0.266 0.256 0.294 0.256

Table 9
Test for Equality of Mean, Homogeneity of Variances, and Similarity in Distribution of the Wet-
Weather Severe Crashes across the Categorical Variables

Variables Levene’s 
Test

Welch’s 
Test

Kruskal-Wallis 
Test

Games-Howell 
Test

Rural/Urban
Test Stat. 0.370 0.380 0.040 0.620
P-Value 0.543 0.538 0.847 0.538

No. of Lanes
Test Stat. 0.650 0.660 3.860 0.810
P-Value 0.421 0.417 0.049 0.417

Lighting
Test Stat. 1.130 1.130 4.340 1.060
P-Value 0.287 0.288 0.037 0.288

Weather
Test Stat. 0.000 0.000 0.010 0.070
P-Value 0.945 0.945 0.926 0.945
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Table 10
Test for Equality of Mean, Homogeneity of Variances, and Similarity in Distribution of the Full 
Crash Dataset Containing Both Severe Crashes observed on Dry and Wet Road Surfaces across the 
Categorical Variables

Variables Levene’s 
Test

Welch’s 
Test

Kruskal-Wallis 
Test

Games-Howell 
Test

Surface Condition 
(Dry/Wet)

Test Stat. 448.710 415.650   348.030    20.390
P-Value     0.001     0.001       0.001      0.001

Rural/Urban
Test Stat.     1.170     1.170       2.390      1.080
P-Value     0.279     0.280       0.122      0.280

No. of Lanes  
(2 lane/4 Lane)

Test Stat.     6.810     6.810     36.560      2.610
P-Value     0.009     0.009       0.001      0.009

Lighting  
(Dark/Light)

Test Stat.     0.000     0.000       0.050      0.040
P-Value     0.964     0.965       0.820      0.965

Weather  
(Rain/ No Rain)

Test Stat. 251.140 339.560   206.460    18.430
P-Value     0.001     0.001       0.001      0.001

Table 11
Parameter Estimates for Severe Crashes observed Dry, Wet Pavement and the Full Dataset Using the 
Statistically Significant Variables

Parameter
Dry Pavement Wet Pavement Total

Estimate Sig. IRR Estimate Sig. IRR Estimate Sig. IRR
Constant 3.188 0.001 24.24 -1.238 0.001 0.29 -0.016 0.954 0.984
Seg. Length 0.491 0.001 1.634 1.008 0.001 2.739 1.317 0.001 3.731
AADT 0.000015 0.06 1.000 0.000074 0.001 1.000 0.000094 0.001 1
TADT -0.042 0.001 0.959     -0.037 0.004 0.963
No of Lanes                  

 4 Lane=1 _ _ _ _ _ _ 0.538 0.001 1.712
2 Lane=0          

Lighting              
Light=1 _ _ _ _ _ _ -0.282 0.05 0.755
Dark =0                

Surface Cond.          
Wet=1 _ _ _ _ _ _ -2.858 0.001 0.057
Dry=0          

Disp. Coeff. 8.88     38.42     14.23  
Goodness-of-Fit Statistics      
AIC 11970 4167   9531  
BIC 12004 4190   9580  
LL -5980 -2080   -4758  
Deviance 1609     589     1440    

The final mathematical model developed to 
fit the observed severe crashes on dry, wet 
and aggregate datasets on the homogenous 
state highways is shown in Table 11. The 

negative binomial model developed for the 
three datasets used the factors identified at a 
statistical significance level of 0.05. Segment 
length and AADT (except for dry pavement 
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condition) were found reliably associated 
with severe crashes. For dry pavement 
conditions and the aggregate datasets, the 
higher the percentage of heavy trucks along 
the segments is the less likely the occurrences 
of severe crashes. A unit increase in the 
percentage of trucks in the segments will 
likely reduce the severe crashes on dry 
pavements (B=-0.042, IRR=0.959) and 
the aggregate data (B=-0.037, IRR 0.963) 
by 4.1 and 3.7 percent respectively, which 
corresponds with the results of (Usman et 
al., 2016). They observed that the higher the 
traffic volume, the lower the likelihood of 
occurrences of severe injury and fatal crashes. 
The reasons suggested were the likelihood 
of congestion due to increase in traffic 
volume, which in turn decreases operating 
speed. (Roh et al., 2017) also reported that 
for four-lane highways, as the percentage 
of truck increases on the segments, there 
was a decrease in the average speed of the 
traffic. As a result of the operating speed 
reduction posted speed limit was not found 
to be an influencing factor leading to severe 
injury and fatality on dry pavement, wet-
weather and aggregate dataset. Similarly, 
regardless of the pavement surface condition 
(dry or wet), weather condition (rainfall 
versus normal), and highway design elements 
including rut depth, macrotextures, IRI, 
grade and pavement cross-slope were not 
found to be key determinants (Ihs et al., 
2011; Gunaratne et al., 2012; Li et al., 2013) 
of severe injury and fatal crashes on two and 
four-lane urban and rural highways selected. 

For the aggregate severe crash dataset, 
lighting and pavement surface conditions 
were also the principal determinants of 
severe injury and fatal crashes. The results 
indicate that the likelihood of severe injury 
and fatality on the selected two and four-
lane rural and urban highways during day 

and street lighting condition (B=-0.282, 
IR R= 0.755) is 2 4.5 percent lower as 
compared with driving during dark roadway 
conditions. This result corresponds with 
the results of (Edwards, 1998; Oňa et al., 
2011; Wu et al., 2014). As compared with 
daylight condition, a 113 percent increase 
in multivehicle crash driver fatality was 
reported during dark roadway conditions 
(Wu et al., 2014). Pavement surface condition 
was a lso a determinant factor for the 
occurrences of severe injury and fatality 
on the selected highways. The results of 
this study suggested that the likelihood 
of occurrences of severe injury and fatal 
crashes on wet pavement surface (B=-2.858, 
IRR=0.057) on the selected highways was 
94.3 percent less than the crashes observed 
on dry pavement surfaces. This was possibly 
attributed to the short duration of wet-
weather condition per year, reduction in 
operating speed and traffic volume due to 
rainfall and bad weather conditions (Keay 
and Simmonds, 2005; Gunaratne et al., 2012) 
and, drivers taking extra preventive actions 
to avoid accidents due to rainfall and slippery 
road surface conditions (Edwards, 1998; 
Nassar et al., 1994; Jung et al., 2011). Using 
the principal factors identified in Table 11, 
for the aggregate severe injury and fatal 
crashes per 100 million VMT (CR) can 
be represented by the following negative 
binomial regression, Eq. (4):

 (4)

where, SL=segment length, TLn=Two Lane, 
FLn=Four Lane, DK= Dark, LT = Light.

The negative binomial regression models 
developed for the severe crashes occurred 
on dry and wet pavements individually, 
and combined were evaluated by using 
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goodness-of-fit tests including, Akaike’s 
Information Criterion (AIC), Bayesian 
Information Criterion (BIC), Deviance, 
and Log Likelihood.  To evaluate the 
relative improvements of the negative 
binomial models (NBM), the AIC and the 
deviance values were compared with Poisson 
regression model (PRG) models formulated 
with the same principal variables. For the 
aggregate severe crash data observed on 
both dry and wet pavement surfaces the AIC 
and deviance values of PRM (not shown), 
were 55,268 and 51,892 respectively. From 
the results of the PRM, it is observed that 
the AIC value is equivalent to the adjusted 
R-square value of about 32 percent. The 
corresponding AIC and deviance values of 
the NBM shown in Table 11 were 9,531 and 
1440 respectively. This substantial reduction 
in both AIC and deviance values indicate 
that the NBM developed is powerful model 
than the PRG (Fridstrøm et al., 1995; Abdel-
Aty and Radwan, 2000) in approximating 
the statistical fit to the severe injury and 
fatal crashes observed in the selected two 
and four-lane urban and rural highways in 
Alabama. 

5. Conclusions

This study evaluated the significance of 
thirteen factors related to pavement and 
geometric design elements of two and four-
lane urban and rural highways, environmental 
factors and traffic characteristics on severe 
injury and fatal crashes reported for the 
five years period ranging from 2010 to 2014 
on the selected state routes in Alabama. 
Using these factors, negative binomial 
regression models were estimated for severe 
injury and fatal crashes observed on dry 
pavement, wet-weather condition and for 
the aggregate dataset. The results indicate 
that the principal factors influencing severe 

crashes for the aggregate crashes on dry 
and wet pavement surfaces were segment 
length, A ADT, TADT, number of lanes, 
lighting and pavement surface condition. 
Interestingly, irrespective of the pavement 
surface and the weather conditions (rainfall 
versus normal), traffic characteristics of the 
segments appear to influence the likelihood 
of severe injury and fatal crashes as compared 
with the highway design elements. Overall, 
the roadway pavement and geometric 
features, such as rut depth, macrotextures, 
IRI, grade and pavement cross-slopes of the 
study segments were insignificant factors 
in determining the likelihood of severe 
crashes.  This result agrees well with prior 
studies by (Ihs et al., 2011; Gunaratne et 
al., 2012; and Li et al., 2013). As shown in 
Tables 8-10, the severe crashes observed in 
rural sections of the segments for the three 
different datasets were not significantly 
different from urban sections. This indicates 
there was no clear association between the 
urban-rural designations of the highways 
and the l ikel ihood of occurrences of 
severe crashes. The results of the negative 
binomial regression model also confirmed 
that urban-rural settings of the segments 
were not significantly associated with the 
severe crashes observed. As can be seen in 
Table 11, depending on the pavement surface 
condition where the observed severe crashes 
were observed, the contributing factors, 
the model variables, the estimates and the 
goodness-of-fit test statistics values were 
different.  
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