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Abstract: State-of-the-art adaptive signal control models, commonly used in developed 
countries, uses upstream or advance detector information for determining control plan. 
These models work well in lane-based traffic conditions especially when multiple junctions 
are involved. However, traffic in many cities across the world is heterogeneous, characterised 
by non-lane based movement and mixed-vehicle type, which causes inaccurate estimation 
of turning proportions. These difficulties can be addressed to a great extent by placing the 
detector at the stop-line rather than in advance or upstream location. However, there is no 
truly adaptive traffic control models exists for such traffic conditions and sensor location. In 
this study, a signal control model is proposed that is truly adaptive and uses stop-line detector 
information. The model aims at real-time allocation of green times through actor-critic 
reinforcement learning; an approach originated from the machine learning community. This 
approach can learn relationships between signal control actions and their effect on the traffic 
system while determining optimal control policy. To test the performance of the model a 
typical four-way four phase intersection with variable flow was simulated using a traffic micro 
simulator (VISSIM) and interfaced with the proposed model. The performance of the model 
was compared with the traditional vehicle actuated system. The results using this approach 
shows significant improvement over traditional control, especially for varying traffic demand. 
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1. Introduction

Operating traffic signals in urban areas 
requires proper timings, so that varying 
demands can be managed ef fectively. 
Traditional algorithms, which are optimized 
off-line, usually generate a library of signal 
timing plans each with fixed stage duration 
and sequence. Plans are retrieved from 
the library for implementation according 
to the time of day and the day of week. 

Such plans require regular updating, 
otherwise the performance declines over 
the time. Most of the operating signal 
systems today are traffic responsive or 
vehicle actuated. The responsiveness to 
traffic is that the allocation of green times 
is adjusted according to real-time traffic 
information. The real-time traffic data is 
usually detected by using inductive loops. 
Moving to adaptive traffic signal control, a 
substantial number of highly sophisticated 
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and complex models are existing. However, 
the basic limitation common to all or most 
of these models is that turning proportions 
estimated using traffic f low models do not 
account for traffic heterogeneity and non-
lane based vehicle movement, which results 
in considerable error in the estimations 
of corresponding green times. It may be 
noted that non-lane based mixed traffic 
conditions are very significant in most of 
the developing countries like India, and 
was well documented (Asaithambi and 
Shravani, 2017). In this study, a stop-line 
based adaptive traffic signal control model is 
developed to address such traffic conditions. 
The proposed framework addresses above 
limitations by using utilized green times 
and discharge information of the previous 
cycles obtained through detectors located 
at the stop-line.

1.1. Literature Review

At a signalized intersection, traffic signals 
typically operate in one of three different 
control modes: pre-timed, actuated, and 
adaptive control. In pre-timed control, all 
of the control parameters are fixed and pre-
set off-line. These techniques are useful in 
generating the parameters for fixed timing 
plans of conventional pre-timed urban traffic 
control systems, where the traffic conditions 
during different time periods of the day (e.g. 
peak hours, off-peak hours) are estimated 
based on the historical information. In 
vehicle actuated control, the performance 
of the system can be rated between pre-timed 
and adaptive control systems. Actual green 
time falls between the pre-set minimum and 
maximum values. Actuated control strategy 
can partially solve the criticism attributed 
to the pre-timed control strategy in a sense 
that it can respond to the real-time traffic 
arrivals of the current green phase. However, 

this actuated control strategy does not take 
into consideration of the queue lengths on 
other conf licting movements, and may 
result in suboptimal control especially 
when the traffic arrival rate is significantly 
different across all the phases (Zhang et 
al., 2007). Adaptive traffic signal control 
performs much better than above two control 
strategies because they normally look ahead 
in time and space. Adaptive control strategies 
can be broadly categorized into heuristics, 
fuzzy logic and optimization models. 

Heuristics such as rule based systems were 
proposed to have real time adaptive traffic 
signal control systems (Lin, 1988; Owen 
and Stallard, 1995). Further, to improve the 
estimations of traffic state Hu et al., (2007), 
Chou and Teng (2002), and Zhang et al., 
(2005) have applied fuzzy logic to model 
the traffic signal control problem in various 
aspects such as traffic movements, geometry, 
and phasing scheme. Although both of these 
models heuristics and fuzzy logic requires 
minimum computation time, they are not 
optimal when the traffic f low do not follow 
historical pattern. To address this, many 
authors proposed various optimization 
models such as DYPIC, MOVA, SCOOT, 
OPAC, and R HODES (Robertson and 
Bretherton, 1974; Vincent and Peirce, 1988; 
Robertson and Bretherton, 1991; Gartner, 
1983; Mirchandani and Head, 2001). These 
models consider traffic signal control as a 
multi-stage decision making problem and 
solved it by move based search methods 
(gradient based or genetic algorithms) or 
constructive search methods (dynamic 
prog ra m m i ng or bra nch a nd bou nd 
techniques) for obtaining optimal solution. 
Although, the models search for optimum 
solution, well known criticism about move 
based search methods is that solution is 
local optimum, whereas it is global optimum 
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in case of constructive search methods. 
However, under certain circumstances such 
as large-scale models like signal control, 
the excessive computation requirement of 
constructive search methods not suitable 
for real time applications. Another criticism 
is that optimization modelling approaches 
require accurate traffic arrival information 
with respect various turning movements, 
for the next few minutes to determine the 
best control plan. This information is often 
affected by traffic dispersion as well as non-
lane based movement of vehicles, and is very 
difficult to obtain.

To overcome afore mentioned problems 
a ssoc iated w it h opt i m izat ion-ba sed 
methods, especially those methods based 
on dynamic programming, Bingham (2001), 
Abdulhai et al., (2003), and Xie et al., (2010) 
have applied reinforcement learning (RL) 
technique to model traffic signal control. 
There are two major advantages of using 
the reinforcement learning to solve multi 
stage decision problems over using dynamic 
programming. First, the RL does not require 
state-transition probabilities and traffic 
arrival predictions as inputs. It can learn the 
state-transition probabilities interactively 
from the system operations. Secondly, after 
the model is trained, it has the same low 
computational requirement as that of rule-
based methods have. Thus, it is more suitable 
for real-time applications. 

Therefore, several problems with the 
existing applications can be identified as 
follows: (1) No adaptive traffic control 
model exist to account for non-lane based 
vehicle movements. (2) Most of the models 
were basically designed with respect to 
corridor or network level rather than isolated 
intersection. Therefore, the solution for 

isolated intersection is sub-optimal. (3) Few 
models require more number of detectors in 
the form of stop-line as well as advanced/
upstream locations, which is difficult from 
practical implementation point of view.

Therefore, the objective of this study is to 
design an adaptive traffic signal control 
model for an isolated intersection using 
stop-line detector information, so that the 
model can address the non-lane based vehicle 
movements. Further, the model does not 
require any accurate predictions as an input 
which otherwise effects performance of the 
control policy significantly.

2. Methodology

The basic idea of the proposed model is 
to bring adaptive feature to the stop-line 
based vehicle actuated controller through 
reinforcement learning as shown in Fig. 1. 
The signal control begins with initialization 
of various controller and model parameters 
such as minimum green gmin, maximum green 
gmax, unit extension e0, and threshold gap 
hth etc. If the time is more than the control 
period the controller stops else it works as a 
traditional vehicle actuated controller during 
the first cycle. After the first cycle, the model 
estimates maximum green for each phase of 
the subsequent cycle based on the utilized 
green times and discharges in the previous 
cycles. Thereafter, the controller terminates 
active phase according to the threshold gap 
criteria as in vehicle actuated control. The 
model learns about these control actions 
(assigning ma x imum green) through 
reinforcement learning. Reinforcement 
learning (RL) is an area of machine learning 
concerned with how an agent ought to take 
actions in an environment to maximize some 
notion of cumulative reward.
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Fig. 1.  
ASCII Controller

To deal with large scale problem such 
as multi-phase signal control, proposed 
model Adaptive Signal Control for Isolated 
Intersection (ASCII) integrates concepts of 
neural network and fuzzy logic into actor-
critic reinforcement learning. Here fuzzy 
logic helps in representing large state space 
very efficiently whereas neural network 
generalizes the training experience to the 
states that were not visited during learning 
process. The design elements of the proposed 
model in terms of the typical reinforcement 
learning (i.e. state, action, and reward) are 
discussed below. 

As the queue length cannot be measured 
using stop-line detector but utilized greens 

can be measured accurately, the state of 
the system is represented by a vector of N 
components that are the utilized greens 
associated with each phase of the previous 
cycle. The action of the control agent is 
the maximum green for each phase of 
the upcoming cycle. The action space is 
represented by neighbourhood of the utilized 
greens in the previous cycle. The reward is 
defined as the increase in the total discharge, 
i.e., the difference between total discharges 
between two successive cycles. If the reward 
has a positive value, this means that the total 
discharge was increased by this value after 
executing the action. However, a negative 
reward value indicates that the action results 
in decreased discharge. The objective of the 
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model is to determine an optimal maximum 
green time so that the intersection discharge 
is maximized over the control period.

2.1. Modeling

Like neural networks, proposed ASCII model 
has four layers as shown in Fig. 2. The first 3 
layers together represent state of the system 
and the action space is represented by fourth 

layer. The learning experience is stored in 
connection weights λk

j and wqk
j   between 3rd 

and 4th layers. The model can be described 
as follows: The first layer is the input layer. 
It receives traffic state variable values and 
sends them to different fuzzy membership 
functions in the second layer. Each node in the 
first layer represents an input variable. Each 
node in the second layer is a fuzzy set with a 
fuzzy membership function associated with it.

Fig. 2. 
Data Flow Across ASCII Model

The inputs to the second layer are the 
state variable values, and the outputs of 
the second layer are fuzzy membership 
function values. The inputs and fuzzy sets 
of the second layer constitute many linguistic 
terms such as Green is Short and Green is Long. 
Thus, the output of the second layer can be 

considered as degrees of membership values 
associated with the short and long fuzzy 
variables (Zhang et al., 2007). The third layer 
corresponds to antecedent part of fuzzy rules 
in the fuzzy logic controller. For example, a 
sample fuzzy rule in the case of four phase 
signal control can be represented as:

 (1)
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Therefore, the output of the third layer can 
be considered as firing strengths. The fourth 
layer is a collection of nodes representing 
consequence part of fuzzy rules. The first 
node stands for the critic, and its output value 
indicates how good the current state value is 
i.e., in the present case it represents expected 
discharge by the end of control policy. The 
remaining nodes correspond to the available 
actions that can be taken, and their output 
values are the preferences to choose each 
action given the current state inputs.

The critic and action values of the policy 
are computed as follows: The input and 
fuzzification parts are same as that in typical 
fuzzy logic controller. Given the latest 
utilized greens as inputs, the short and long 
fuzzy variables compute membership values 
and these values are feed into the third layer 
of the model. Assuming the jth fuzzy rule has 
the following F antecedents, Eq. (2):

 (2)

Then the firing strength of the jth fuzzy rule 
is Eq. (3):

 (3)

The critic value Vk
s is computed as Eq. (4):

 (4)

Where, λk
j is weight connecting the jth fuzzy 

rule and the critic output in the kth cycle; 
similarly, the preference of choosing each 
action Aq is computed as Eq. (5):

 (5)

Where, wqk
j   is weight connecting the jth fuzzy 

rule and the qth action output in the kth cycle. 

The training of the model is done using well-
known gradient descent technique. However, 
temporal difference (TD) error is used while 
applying this technique. The advantage of 
temporal-difference method is that it can 
learn directly from raw experience without 
either the model of the system’s dynamics 
or targeted output. The TD methods update 
estimates based in part on other learned 
estimates, without having to wait for the 
final outcome. 

Therefore, a TD error δ in estimating the 
critic value is computed as Eq. (6): 

 (6)

Where, Vk +1
 and Vk  are cycle discharges in 

the (k+1)th and kth cycles; γ is discount rate 
accounted for future discharge; Vk

s' is the 
critic value estimated for the new state of 
green times in the (k+1)th cycle, Vk

s is the 
critic value estimated for the state of green 
times in the kth cycle; and the new connection 
weights are updated as Eqs. (7-8):

 (7)

 (8)

To facilitate the agent to search overall state-
action space during training, a well-known 
ε-greedy method is used for selecting a 
particular action. The ε-greedy learner selects 
greedy action most of the time except for a 
small amount (ε) of time, it selects a random 
action uniformly. The value of ε is chosen to 
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decrease gradually with iterations. This will 
result in more exploration at the beginning 
of the learning process which enables the 
agent to search the overall state-action space 
and gradually emphasizes exploitation as 
the model converges to the optimal policy 
(El-Tantawy and Abdulhai, 2010).

3. Model Testing

The proposed real-time adaptive signal 
control model was evaluated by measuring 
intersection delay, total throughput, and 
queue length. The performance of the 
widely used stop-line based vehicle actuated 
control was used as a bench mark and is 
compared to the proposed model. The 

models were implemented using a scalable, 
high performance microscopic simulator 
VISSIM. It has been widely used in the 
testing of various algorithms and evaluation 
of various Intelligent Transportation Systems 
(ITS) strategies because of its powerful 
Application Programming Interfaces (API). 
The proposed model was developed as a 
VISSIM plug-in through API programming.

To demonstrate the scalability of the model, 
a typical four phase isolated intersection as 
shown in Fig. 3 was chosen. Since all the three 
movements from each approach are combined 
into a single phase, only one detector is placed at 
each stop line else more number of detectors are 
required depending upon the phasing scheme. 

Fig. 3. 
Illustrates Intersection Geometry, Phasing, Detectors and Controller Communication Details

Further, to test the robustness of the model 
diverging flow patterns (high volume on west 
and east approaches and low volume on south 
and north approaches) with typical day time 
variations as shown in Fig. 4 was given. To 
account for the mixed vehicle type and no-
lane based vehicle movement, the VISSIM 
model of the test intersection was developed 
as per the guide lines given by Mathew and 

Radhakrishnan (2010). Since performance 
of the vehicle actuated controller largely 
depends upon the optimization of controller 
parameters, the parameters such as minimum 
green (gmin), maximum green (gmax), unit 
extension (e0), and threshold gap (hth) are 
optimized as 10 s, 45 s, 3 s, and 2 s respectively 
by trial and error for the given traffic, geometric, 
and control conditions (FHWA, 2016).
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Fig. 4.  
Flow Pattern on all the Four Approaches of the Intersection 

During the simulation traffic volumes and 
allotted green times were measured for most 
of the day, specifically from morning 6 hours 
to evening 22 hours. 

The volumes and green times obtained 
f rom veh ic le ac t uated (VA) cont rol 
model were presented in Fig. 5a and 5b 
respectively. 

Fig. 5a. 
Measured Volumes under Vehicle Actuated (VA) Model

Fig. 5b. 
Green Times obtained from Vehicle Actuated (VA) Model
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Similarly, volumes and green times obtained 
from ASCII model were presented in Fig. 
6a and 6b respectively. From the Fig. 5a 
and 5b it is clearly understood that though 
there is increasing demand on the West 
approach VA control was saturated to a 
pre-set maximum green of 45 s. However, 
proposed ASCII model sensitive to vary its 
green time according to the f low pattern on 
its approaches (Fig. 6a and 6b). 

The use of reinforcement learning helped the 
model to look at the whole intersection in 
space and time ahead, and act accordingly by 
varying maximum green time in every cycle. 
Hence, it can be inferred that the proposed 
model is adaptive to real time traffic pattern. 
In addition, it can be noticed that the green 
times are well utilized without any wastage 
because of the use of stop-line detector.

Fig. 6a. 
Measured Volumes under ASCII Model

Fig. 6b. 
Green Times obtained by ASCII Model

The overall performance comparison was 
summarised in Table 1. The delay decreased 
about 10 % and 24 % on West and East (high 
volume) approaches respectively when 

compared with VA control. However, the 
delay increased about 91 % and 142 % on 
South and North (low volume) approaches 
respectively as expected. It may be noted 
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that such high delays are common in mixed 
traffic conditions due to complex interaction 
between vehicles (Bhuyan and Rao, 2011). 
Although delay increased on low volume 
approaches, overall intersection delay 
decreased about 3 %.  Similarly, queue 
decreased about 10 % and 19 % on West and 
East approaches respectively, and increased 
about 96 % and 158 % on South and North 
approaches. Further, overall intersection 
queue decreased about 6 %. 

In accordance w ith delay and queue, 
the intersection discharge increased on 

high volume approaches (5 and 9 %), 
and marginally decreased on low volume 
approaches (0 and 2 %) due to lack of 
demand. Final ly, overal l intersection 
discharge increased (5 %). 

Therefore, it can be summarized that the 
proposed control model is able to improve 
the intersection discharging capacity without 
penalizing overall intersection delay and 
queue values. Hence, it can be concluded 
that ASCII model is sensitive to look at the 
whole intersection rather than active phase 
(tunnel vision) alone as in VA controller.

Table 1 
Comparison of Delay, Queue, and Discharge obtained from VA and ASCII Models

Approach Model Delay (s/veh) % Change 
wrt VA Queue (m) % Change 

wrt VA
Discharge 

(Veh)
% Change 

wrt VA

West
VA 150

-10
152

-10
29005

5
ASCII 135 137 30544

East
VA 152

-24
153

-19
28305

9
ASCII 116 124 30844

South
VA 57

91
28

96
9088

0
ASCII 109 55 9087

North
VA 55

142
26

158
8930

-2
ASCII 133 67 8778

Intersection
VA 128

-3
122

-6
75328

5
ASCII 124 115 79253

4. Conclusion

This paper presented the frame work and 
evaluation of “Adaptive Signal Control of an 
Isolated Intersection (ASCII)”. The proposed 
model could bring adaptive feature to the 
vehicle actuated controller by estimating 
maximum green timings using stop-line 
detector information and neuro-fuzzy actor 
critic reinforcement learning. The problem 
of traffic heterogeneity and non-lane based 
vehicle movement is addressed by moving 
detector to the stop-line, measuring utilized 
green times and discharges.  Therefore, it 
can be observed that the information given 

to the model is more reliable even under 
such traffic conditions because it is not 
dependent on any forecasting as in other 
state-of-the-art models. Further, the model 
is more convenient with respect to field 
implementation as it requires only measured 
stop-line detectors information.

As the test results indicated that ASCII is 
a promising adaptive traffic control model 
in dealing with large scale problem of multi-
phase signal control, and its applicability 
to real time operation, the model can be 
extended to control a corridor involving 
multiple intersections. 
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