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Abstract: The field of computer vision based civil infrastructure defect detection is 
constantly evolving with steady advances being made in sensing technologies, hardware, 
and image processing techniques. Although a number of image processing techniques have 
been proposed over the years with varying degrees of success, real-world situations (e.g., 
lack of background illumination, shadow changes) pose a significant challenge to the wide 
adoption of such techniques, especially for routine analysis. With the emerging application 
of Unmanned Aerial Vehicles (UAVs) or drones for civil infrastructure inspection and 
condition monitoring, an added level of complexity is introduced in vision-based crack 
detection as the process of acquiring images using UAVs is not yet standardized resulting in 
images of widely varying sizes, resolutions, blurriness, etc. In recent years, Deep Learning, 
a generalized form of Deep Neural Network (DNN) algorithms that can learn very complex 
mappings between inputs and outputs directly from the data, has achieved huge success in 
diverse fields such as automatic speech recognition, image recognition, Natural Language 
Processing (NLP), drug and materials discovery, etc. However, the large number of hidden 
neurons and layers used in DNNs result in computationally-intensive matrix and vector 
computations involving millions of parameters, requiring the use of high-performance 
computing systems. Also, it is practically impossible to get labeled “big data” samples in 
many domains to be able to train an entire DNN from scratch. In such situations, the use of 
a pre-trained deep learning model and fine-tuning it to the novel task at hand with smaller 
datasets, has shown to be successful across domains. In this paper, we propose the use of 
pre-trained deep learning models with transfer learning for crack damage detection in UAV 
images of civil infrastructure. The robustness of the proposed approach is tested on a small 
set of real-world, complex UAV-sourced infrastructure images not used during training 
and validation. The results show that the proposed method can rapidly and easily achieve 
up to 90% accuracy in finding cracks in realistic situations without any augmentation and 
preprocessing.
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1. Introduction 

T he 2017 A mer ican Societ y of Civ i l 
Engineers (ASCE) Infrastructure Report 
Card assigned a ‘D’ grade for United States 
infrastructure, which includes bridges, 
roads, rail, levees, energy, etc. (ASCE, 
2017). Eff icient condition monitoring 
strategies can aid engineers in developing 
appropriate scheduling of infrastructure 
maintenance and repair activities leading 
to significant reduction in infrastructure 
life-cycle maintenance costs. In recent 
y e a r s ,  Un m a n n e d  A e r i a l  Ve h i c l e s 
(UAVs), commonly referred to as drones, 
are witnessing unprecedented growth 
and applications ranging from disaster 
management and construction surveying to 
infrastructure inspection, etc. (Floreano and 
Wood, 2015). On August 2, 2016, the White 
House Office of Science and Technology 
Policy (OSTP) in the United States hosted 
the first-ever workshop on Drones and the 
Future of Aviation to advance and celebrate 
the potential of UAVs. In this workshop, a 
series of actions were initiated to promote 
the safe integration and adoption of UAVs 
across the US, including $35 million in 
research funding by the National Science 
Foundation (NSF) (which includes research 
on UAVs for monitoring and inspection of 
critical infrastructure systems). In this paper, 
consistent with the common usage, the terms 
UAV, Unmanned Aerial System (UAS), and 
drone are used interchangeably and they all 
refer to the same thing.

T he UAVs can be used for a var iet y 
of inspect ion and asset management 
applications ranging from structural health 
monitoring of bridges, buildings and wind 
turbines to the damage assessment of 
infrastructure after disaster events such 
as Hurricanes Katrina, Wilma and Ike; 

Typhoon Morakot; and the 2009 L’Aquila, 
2010 Haiti and 2011 Japan Earthquakes. 
I nspec t i ng c iv i l  a nd t ra nspor tat ion 
infrastructure manually is an expensive and 
relatively dangerous task. The use of UAV 
for infrastructure inspection purposes can 
make this task significantly easier, safer and 
cost effective (Vidyadharan et al., 2017). 
Many times a lift or a crane is used to allow 
manual access to inspect the ‘hard to reach’ 
locations where damages may have occurred. 
UAVs provide the accessibility and flexibility 
to navigate around complex structure and 
collect data with equal or higher quality to 
that collected by manual inspectors. The 
data collected by UAVs can span across an 
array of data types such as 3-D rendering 
using photogrammetry, High Definition 
(HD) visual imagery, Light Detection & 
R anging (LiDA R) scanning, infrared 
thermography, multispectral modelling and 
Non Destructive Evaluation (NDE) using 
Ultrasonic Testing (UT). These methods can 
be used for monitoring both the microscale 
and macroscale defects of infrastructures 
resulting in detailed inventory, survey, 
and condition assessment of civ i l and 
transportation infrastructure systems. 

The main challenge for visual inspection 
of large civil infrastructures using UAVs is 
to estimate the appropriate distance to be 
maintained between the UAV equipped with 
camera and the target to be able to achieve 
reasonable detection sensitivity (Ellenberg 
et al., 2014). However, in recent years, the 
availability of small-size, lightweight, high-
resolution cameras make it possible for UAVs 
to acquire HD images of even micro-cracks.

The valuable data such as HD images 
obtained using UAVs can be used to train 
machine learning and deep learning 
algorithms to make the process of identifying 
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defects on the infrastructure from images 
eff icient. Such images collected using 
UAVs can come from different types of 
infrastructure such as roads, bridges, silos, 
wind turbines and concrete walls.

We propose the use of a pre-trained Deep 
Convolutional Neural Network (DCNN) 
model with transfer learning for automated 
crack detection in UAV images. Deep 
Learning (DL) has recently been used for 
road crack detection but since it typically 
requires large amounts of labeled training 
data, here we propose the use of pre-
trained DCNN with transfer learning for 
automated crack detection, and demonstrate 
its advantages. The rest of the paper is 
divided as follows. A review of state-of-the-
art vision-based automated crack detection 
methods is discussed first, with specific focus 
on UAV visual inspection, under Related 
Works followed by a brief introduction 
to the concept of DCNN with transfer 
learning for cross domain image analysis. 
The Research Study is then presented which 
includes description of the datasets used, 
the proposed methodology, the experiments 
carried out and the results.

2. Deep Learning in UAV based Visual 
Inspection: A Brief Review

The rapidly ageing civil infrastructure 
systems pose a serious challenge to the 
safe operations, structural and functional 
health management, especially in the context 
of ever-increasing budgetary constraints 
faced by system operators. In recent years, 
the UAVs have emerged as a time-saving 
and cost-effective alternative for carrying 
out v ision-based real-t ime Structural 
Health Monitoring (SHM) through full 
f ield mapping of large civ il structures 
(Sankarasrinivasan et al., 2015). Pereira and 

Pereira (2015) proposed embedded image 
processing system implementations for 
automatic recognition of cracks in building 
facades using UAV images. They concluded 
that a combined aerial-based and ground-
based detection approach would prove to be a 
viable approach: the embedded particle filter 
on the Raspberry-Pi in UAV can be used for 
preliminary detection of crack, and, if the 
probability of crack presence is higher, that 
image would be stored for further processing 
at the ground station using a Sobel operation 
filter (Pereira and Pereira, 2015).

(Ellenberg et al., 2014) proposed the use 
of unmanned multicopter equipped with 
a 16MP camera for visual inspection of 
masonry buildings and preliminary detection 
of cracks. Some challenges arising from 
roughness of surface, masonry patterns, edges 
from doors, windows, etc. were reported 
with the application of an edge detection 
algorithm to UAV images of masonr y 
walls. To ensure accurate localization of 
cracks in the images, (Ellensberg et al ., 
2014) suggested that the angle at which the 
UAV and gimbal are oriented and the GPS 
location should all be recorded accurately. 
Even then GPS readings can be inaccurate 
due to interference from the structure being 
observed and one solution to that could be to 
stay farther away from the structure.

Although machine learning based techniques 
have been successfully applied to object 
detection in UAV images in the context 
of SHM, the use of Deep Learning (DL) 
for prognostics and damage assessment 
of civil infrastructure systems is still an 
emerging area of research, mainly due to 
the difficulties in generating good quality 
labeled training image datasets (Sarkar et 
al., 2016; Yokoyama and Matsumoto, 2017). 
Some recent studies, not exclusive to the 
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SHM context, report on the use of DL for 
UAV-based applications. For instance, (Lee 
et al., 2017) proposed a novel object detection 
method wherein the images captured using 
the UAV are processed in the off-board 
computing cloud using the state-of-the-art 
Faster Regions with CNNs (R-CNNs), while 
low-level object detection and short-term 
navigation takes place onboard. They tested 
their approach with a Parrot AR.Drone 
2.0 as a low-cost, lightweight drone in an 
indoor environment and reported that their 
hybrid approach is able to approach real-
time performance even when detecting 
hundreds of object categories, despite the 
unpredictable communication lags resulting 
from the use of cloud-based computation 
resources.

More recently, (Carrio et al., 2017) provided 
a thorough review on the reported uses and 
applications of DL for UAVs, including the 
major challenges for the application of DL 
for UAV-based solutions. Although the UAVs 
can be equipped with a variety of sensor 
payloads (such as LiDAR and other non-
destructive sensing devices), (Carrio et al., 
2017) found that most successful applications 
of DCNN to UAVs were with respect to 
visual data (images) owing to the low-cost, 
lightweight, and low power consumption of 
image sensors.

3. Deep Convolutional Neural Networks 
and Transfer Learning

Deep Neural Networks (DNNs), more 
commonly referred to as Deep Learning 
(DL), employ deep NN architectures to 
automatically learn hierarchy of features from 
raw input data without the need for feature 
engineering (Hinton et al., 2006). Loosely 
inspired by how the mammalian brain uses 
different areas of the cortex to abstract 

different levels of features when given an 
input percept, deep learning methods are 
characterized by deep architectures with 
several hidden layers that allow them to learn 
many levels of abstraction, as opposed to 
shallow architectures with 1 or 2 hidden 
layers (Xie et al., 2017).

(Hinton et al., 2006) proposed Deep Belief 
Networks (DBNs) with a new unsupervised 
training method called the layer-wise-greedy-
training, which gave rise to the popularity 
of deep learning methods. Going beyond 
traditional machine learning and artificial 
intelligence approaches that depend on 
human-crafted features, DL technologies, 
with their abi l ity for automatic high-
level feature abstraction combined with 
exponential growth of data, have already 
produced breakthrough results in Natural 
Lang uage Processing (NLP), speech 
recognition, computer vision, and materials 
informatics (Agrawal and Choudhary, 2016). 
There are four main DL architectures, 
namely the Restricted Boltzman Machines 
(RBMs), DBNs, Autoencoder (AE), and Deep 
Convolutional Neural Networks (DCNNs or 
Deep ConvNets) (Liu et al., 2017).

DCCNs have shown to be highly effective 
in processing visual data, such as images 
and videos. DCNNs take raw input data 
at the lowest level and transforms them 
by processing them through a sequence 
of basic computational units to obtain 
representations that have intrinsic values 
for classification in the higher layers (Bai, 
2017; Goh et al., 2014). A DCNN typically 
consists of three layer ty pes (Fig. 1): 
convolution layers, subsampling layers, and 
fully connected layers. A convolutional layer 
is parameterized by the number of channels, 
kernel size, stride factor, border mode, and 
the connection table. The convolution layer 
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takes the input image and applies convolution 
filter on it to produce the output image or 
the filter response. Multiple convolutional 
layers are used to take into consideration the 
spatial dependencies among image pixels. 
The subsampling layer is used to make the 
neural network more invariant and robust. 
The max-pooling method is commonly used 

for the subsampling layer as it has shown 
to lead to faster convergence and better 
generalization. It is common to use multiple 
fully-connected layers after several rounds 
of convolution, and the resulting structure 
of the last convolutional layer is f lattened 
before connecting to the following fully-
connected layer.

Convolutions Pooling Convolutions Pooling Fully 
Connected

Output 
Prediction

Input Image

Feature 
Maps

Feature 
Maps

Feature 
Maps

Feature 
Maps

Fig. 1.
A Schematic of Convolutional Neural Network (CNN) Architecture

DCNNs typically require large annotated 
image datasets to achieve high predictive 
accuracy. However, in many domains, 
acquisition of such data is difficult and 
labeling them is costly. In light of these 
challenges, the use of ‘off-the-shelf ’ DCNN 
features of well-established DCNNs such 
as VGG-16, AlexNet, and GoogLeNet pre-
trained on large-scale annotated natural 
image datasets (such as ImageNet) have 
been shown to be very useful for solving 
cross domain image classification problems 
through the concept of transfer learning and 
fine-tuning (Shin et al., 2016). In DCNN, 
representations learned at different layers 
of the network correspond to different 
levels of abstractions present in the input 
images. The initial layers extract edges 
and color information while the latter layer 
filters encode shape and texture. The idea 
behind transfer learning is that it is cheaper 
and efficient to use deep learning models 
trained on “big data” image datasets (like 

ImageNet) and “transfer” their learning 
abi l it y to new classi f icat ion scenar io 
rather than train a DCNN classifier from 
scratch (Bar et al., 2015). With adequate 
fine-tuning, pre-trained DCNN has been 
shown to outperform even DCNN trained 
from scratch for some medical imaging 
applications (Shin et al., 2016; Tajbakhsh 
et al., 2016).

4. Research Study

The goal of this study was to develop a 
simplified, crack detection model from 
UAV images of civil infrastructure through 
the application of deep transfer learning 
approach. Accordingly, the experimental 
study involved acquisition of UAV visual data 
(images containing cracks and no cracks) and 
the development of automated, UAV-vision-
based crack detection system through the 
application of ImageNet pre-trained VGG-16 
DCNN to the UAV images. 

5

International Journal for Traffic and Transport Engineering, 2018, 8(1): 1 - 14



4.1. UAV Images Dataset

In this study, we used a Hexacopter UAV 
(Fig. 2) to collect close-up images of few 
common civil infrastructure systems (like 
storage silos, local roadways, etc.) due to 
attributes such as high stability and precise 
control. This hexacopter was equipped 
with state-of-the-art guidance and control 
systems to validate precision controls and 
enable autonomous f light capabilities so as 
to minimize the role of a human operator in 
the loop. It is capable of carrying a payload 

of 15 lbs with an endurance of 30 minutes. 
The HD visual inspection is carried out 
using the Hexacopter-I UAV with a 30 MP 
high definition Canon EOS 5D Mk IV DSLR 
camera mounted on a 3-axis rotatable gimbal 
with live video transmission, which allows 
the inspector to change the direction of the 
camera and focus to get better pictures of the 
defects on the structure. Examples of HD 
images of cracks and corrosion on different 
structures, as well as those with no cracks, 
captured by this camera are shown in Fig. 
3 and Fig. 4.

Fig. 2.
Hexacopter UAV Equipped with High Definition Camera Used for Visual Inspection in this Research Study
Source: authors

The primary classes of image categorization 
would be the cracked subset (80 images) and 
uncracked subset (50 images) of images. The 
images obtained from UAV can vary based 

on proximity to the surface, angle and can 
be collected more often, thereby allowing 
for the flexibility of multiple iterations of the 
same defect present on the infrastructure.
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Fig. 3.
Examples of UAV Images of Infrastructure with Cracks
Source: authors

Fig. 4.
Examples of UAV Images of Infrastructure with No Cracks
Source: authors

4.2. Crack Detection Approach Using  
Pre-trained Deep Learning Model

We  u s e d  t h e  K e r a s  d e e p  l e a r n i n g 
framework (Chollet, 2015) that includes 
pre-trained deep learning models made 
available alongside weights within Keras 
Applications. Specifically, we used the 
Keras implementation of the VGG-16 model 
(16-layer DCNN developed by the Visual 
Geometry Group (VGG) at the University 
of Oxford), with weights pre-trained on 
ImageNet database in this study (Pal, 2016; 

Simonyan and Zisserman, 2014). A schematic 
illustration of the VGG-16 architecture is 
shown in Fig. 5. The ImageNet database, 
built upon the hierarchical structure of 
WordNet, contains more than 3.2 million 
cleanly annotated images distributed over 
5,247 categories (Deng et al., 2009). Since 
the pre-trained VGG-16 model has learned 
to extract features from images that can 
distinguish one image class from another, 
they have shown to achieve excel lent 
performance even when applied to image 
recognition and classification datasets in 

7

International Journal for Traffic and Transport Engineering, 2018, 8(1): 1 - 14



other domains (Pal, 2016; Simonyan and 
Zisserman, 2014). When the fully-connected 
classifier (or the bottleneck layer) is removed 
from the pre-trained VGG-16 network, it 
can be used as a deep feature generator for 
producing semantic image vectors for our 

UAV images. These semantic image vectors 
can then be trained and tested using another 
classifier (like Neural Networks [NN], 
Support Vector Machine [SVM], Random 
Forest [RF], etc.) for predicting the class 
labels (‘crack’ or ‘no_crack’).
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Fig. 5.
A Schematic Illustration of VGG-16 Architecture

4.3. Results and Discussion

In this study, the truncated VGG-16 DCNN 
is used as deep feature generator for our 
UAV images of civil infrastructure. We 
train only the final classifier layer using 
ImageNet pre-trained VGG-16 DCNN 
features for the extracted semantic image 
vectors. The overall framework of the 
proposed methodology is presented in 
Error! Reference source not found.. Various 

experiments were conducted to assess the 
pavement crack detection performance of 
the pre-trained VGG-16 DCNN network 
w ith t ransfer learning. For the f ina l 
classifier layer, we employ and compare 
specific machine learning classifiers that 
have shown promising results in previous 
vision-based crack detection studies, such 
as Neural Networks (NN), Support Vector 
Machine (SVM), and Random Forest (RF). 
Apart from these, we also included Logistic 
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Regression (LR) and Extremely Randomized 
Tree (ERT) (Geurts et al., 2006) in our 
investigations. 

The following designations are used for 
the various deep transfer learning model 
configurations evaluated in this study 
for automated crack detection from UAV 
images of civil infrastructure (specific 
parametric values for each of the machine 
learning classifiers were chosen based on the 
successful results obtained from a previous 
study by (Gopalakrishnan et al., 2017)):
• TL + NN (A M): Single NN layer 

classifier trained on ImageNet pre-
trained VGG-16 DCNN features for 
UAV images (optimizer: ‘adam’ (AM) 
as implemented in Keras);

• T L + R F (30 0): R a ndom Forest 
classifier trained on ImageNet pre-
trained VGG-16 DCNN features for 
UAV images (number of trees: 300);

• TL + ERT (300): Extremely Random 
Trees classifier trained on ImageNet 
pre-trained VGG-16 DCNN features 
for UAV images (number of trees: 
300);

• TL + SV M (L,5): Support Vector 
Machines classifier trained on ImageNet 
pre-trained VGG-16 DCNN features 
for UAV images (kernel type = ‘linear’ 
[L]; C = 5.0);

• TL + LR (L1): Logistic Regression 
classifier trained on ImageNet pre-
trained VGG-16 DCNN features for 
UAV images (penalty = ‘L1’).
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Fig. 6.
Overall Framework of the Proposed Deep Transfer Learning Approach applied to UAV Images

Deep transfer learning was implemented 
with the Keras (Chollet, 2015) deep learning 
framework, using a Intel® Core™ i7-5600U CPU 
on 64-bit Windows® 10 OS. The ImageNet 
pre-trained VGG-16 DCNN implemented 
within Keras Applications takes in a default 

image input size of 224 x 224. Other image 
dimensions not smaller than 48 x 48 are valid 
as well. A 224 x 224 image input dimension 
(which was used in this study as well) results 
in 25,088 deep transfer learning features that 
serve as inputs to the final classifier. 
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For  t he  s i n g le - l ay e r  N N c l a s s i f ie r 
implemented in Keras, 256 neurons were 
used in the hidden layer and a dropout value 
of 0.5 was used. The ‘relu’ activation was used 
in the hidden layer and ‘softmax’ activation 
in the output layer. The image batch size was 
set to 32 and all models were trained for up to 
50 epochs. Among the total number of UAV 
images (80 with ‘crack’ label and 50 with 
‘no_crack’ label), 80% was used for training 
and validation and the rest 20% were used 

for testing. Among the 80% of the images 
dataset used for training and validation, 
10% was used for validation alone. The early 
stopping criteria was used with the final 
model being the one with low validation loss. 
Traces of training and validation accuracy 
and loss (average categorical cross-entropy 
error) during the training of single-layer NN 
classifier (optimizer: ‘adam’) with ImageNet 
pre-trained VGG-16 DCNN deep image 
features are shown in Fig. 7.

Fig. 7.
Training and Validation Accuracy (top) and Loss (bottom) during Training Single-layer Neural 
Network (NN) with Pre-trained Deep Learning Model Semantic vectors (x-axis represents Epochs and 
y-axis represents Accuracy in the Top Figure and Loss in the Bottom Figure, respectively)

Standard implementations in ‘scikit-learn’ 
machine learning library in Python were 
used for all other classifiers. A comparison 
of pavement crack detection results using 
various deep transfer learning models 

is presented in Table 1. Classif ication 
p e r f o r m a n c e  m e t r i c s  i n c l u d e  t h e 
acc u rac y, prec is ion, reca l l ,  F1-score 
and Cohen’s Kappa score (Blackman and 
Koval, 2000).
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Table 1 
Comparison of Crack Detection Results on UAV Test Set Images of Civil Infrastructure using Pre-trained 
Deep Learning Model with Various Final Classifiers

Final Classifier Model Accuracy Precision Recall F1-score Cohen’s 
Kappa Score

Single-layer Neural 
Network (NN) TL + NN (AM) 0.89 0.91 0.89 0.89 0.788

Random  
Forest (RF) TL + RF (300) 0.86 0.86 0.86 0.85 0.622

Extremely Randomized 
Trees (ERT) TL + ERT (300) 0.82 0.87 0.82 0.82 0.650

Support Vector  
Machine (SVM) TL + SVM (L,5) 0.75 0.84 0.75 0.74 0.515

Logistic  
Regression (LR) TL + LR (L1) 0.89 0.91 0.89 0.89 0.788

Among these 5 classifiers, the single-layer 
NN classifier (with Adam optimizer) and 
logistic regression classifiers (penalty = 
‘L1’) trained on ImageNet pre-trained 
VGG-16 DCN N feat ures y ielded t he 

best performance, followed by R F and 
ERT classi f iers. This result is further 
confirmed by the Area-Under-the-ROC-
Cur ve (AUC) values for the di f ferent 
classifiers in Fig. 8. 
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4. Conclusions 

In this paper, we explored and evaluated the 
deep transfer learning approach, viz., use 
deep learning models trained on “big data” 
image datasets (ImageNet) and “transfer” 
their learning ability to automatic crack 
detection from complex UAV images of civil 
infrastructure systems. A single-layer neural 
network classifier and logistic regression 
classifier trained on ImageNet pre-trained 
VGG-16 DCNN features yielded the best 
performance. The results show that the 
proposed method can rapidly and easily 
achieve up to 90% accuracy in f inding 
cracks in realistic situations without any 
augmentation and preprocessing. 

Our future research efforts will focus on 
addressing the following challenges: 
• Since there is no publicly available 

big UAV i mages dataset of c iv i l 
infrastructure systems, or the available 
big image datasets (such as ImageNet) 
have low contextual similarity with 
our images of interest, we will try to 
develop a module for collecting and 
preprocessing UAV images in order to 
create a well-organized, clean and big 
dataset of images for predictive analysis; 

• We’ll extend our classification algorithm 
to include object detection which makes 
it possible to detect cracks and crop 
the crack region and send it for further 
image processing instead of having the 
whole image in the memory; 

• Explore other classification methods 
with or without the use of pre-trained 
deep learning models to continuously 
improve the algorithms; 

• Extend our algorithms to detect and 
classify other types of defects such as 
corrosion, dents, etc.; 

• Combin ing our UAV based deep 
learning algorithms with big data 
techniques such as Hadoop, MapReduce 
to handle complex computing; 

• Use of these deep learning techniques 
on data obtained not just from a HD 
camera, but also from infrared thermal 
cameras and 3D rendered models 
obtained from LiDAR scanners and 
photogrammetry would be a major 
breakthrough in identifying defects of 
various types and dimensions from UAV 
images of civil infrastructure systems.
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