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Abstract: This paper focuses on predicting Australia’s outbound international airline passenger 
demand using an artificial neural network (ANN) modelling method. The modelling in 
the study was based on annual data for the period 1993 to 2016. The model was developed 
using the input parameters of world GDP, world population growth, world jet fuel prices, 
world air fares (proxy for air travel cost), Australia’s tourism attractiveness, outbound flights, 
Australia’s unemployment levels, the Australian and United States foreign exchange rate and 
three dummy variables (Sydney Olympics, 9/11 and the 2006 Commonwealth Games). 
The artificial neural network (ANN) used multi-layer perceptron (MLP) architecture that 
compromised a multi-layer feed-forward network and the sigmoid and linear functions were 
used as activation functions with the feed forward-back propagation algorithm. The ANN 
was applied during training, testing and validation and had 8 inputs, 1 neurons in the hidden 
layers and 1 neuron in the output layer. The data was randomly divided into three data sets; 
training, testing and model validation. The best-fit model was selected according to four 
goodness-of-fit measures: mean absolute error (MAE), mean square error (MSE), root 
mean square errors (RMSE), AND mean absolute percentage errors (MAPE). The highest 
R-value obtained from the ANN model is 0.99733, demonstrating that the ANN provided a 
high predictive capability.

Keywords: air transport, artificial neural network (ANN), Australia, forecasting methods, 
outbound passengers.
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1. Introduction

Because of Australia’s relatively remote 
geographical location, air transport plays a 
significant role in facilitating the country’s 
commerce and tourism attractiveness. 
Air and ocean transport are the only two 
modes available for passengers wishing 
to travel to/or from Australia. In 2016, 
sixty-one international scheduled airlines 
operated services to/from Australia, this 
included 5 dedicated all-cargo airlines but 
excludes airlines operating only through 

code-share arrangements. There was a total 
of 18,703,064 outbound passengers from 
Australia in 2016 (Bureau of Infrastructure, 
Transport and Regional Economics, 2017). 
The key air travel markets from Australia 
include China, Japan, New Zealand and the 
USA.

The airlines serving Australia follow two 
distinct business models; the full-service 
network carrier (FSNC), for example, Cathay 
Pacific and Qantas Airways, and the low-cost 
carrier (LCC), for example, AirAsia-X and 
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Jetstar Airways. Irrespective of the business 
model that is defined and implemented, 
forecasting and modelling future air travel 
demand is regarded as one of the most critical 
airline management functions (Srisaeng et 
al., 2015a). This is because future passenger 
air traffic forecasts influence fleet planning, 
route net work development, investor 
efficiency, as well as helping the airline to 
reduce its risk profile through an objective 
evaluation of the demand side of its business 
(BaFail et al., 2000). 

Forecast ing future a ir travel demand 
therefore plays an important role in the 
decision-making and planning for airlines 
(Sr isaeng et al . , 2015a). Histor ica l ly, 
multiple linear regressions models have been 
extensively used to model airline passenger 
demand (Abed et al., 2001; Aderamo, 2010; 
Bhadra, 2003, Kopsch, 2012; Sivrikaya 
and Tunç, 2013). In recent years, the use 
of artificial neural networks (ANNs) has 
grown rapidly due to their ability to map 
any linear or non-linear function. ANNs also 
do not have any associated data assumption 
requirements (Kunt et al., 2011; Santos et al., 
2014). ANNs are also specifically designed 
to handle a very large, complex systems 
that have many inter-related parameters 
(Kalogirou, 2014).

Despite their reported benef its, there 
have only been a small number of studies 
undertaken that have used ANNs to model 
air travel demand. Alekseev and Seixas 
(20 02, 20 09) developed A N N-based 
forecasting models to predict the annual 
Brazilian air transport passenger demand. 
In another study, (Chen et al . , 2012) 
employed a back-propagation artif icial 
neural network (BPN) to improve the 
forecasting accuracy of air passenger and 

air cargo demand from Japan to Taiwan. 
More recently, Srisaeng et al., (2015a, 2015b) 
proposed and tested ANNs for predicting 
Australia’s domestic and low-cost carrier 
(LCC) passenger demand, respectively. 
Despite the signif icance of Australia’s 
outbound airline services to the country’s 
economy, there has been, to the best of the 
authors’ knowledge, no any reported study 
that has developed and modelled Australia’s 
outbound air passenger demand using an 
ANN-approach. Thus, the primary aim 
of this study is to address this apparent 
research gap.

The remainder of the paper is structured 
as follows: section 2 presents the ANN 
architecture, data collection and variable 
selection, goodness-of-fit measures and the 
training and testing of the ANN. Section 
4 summarises the empirical results. The 
study’s conclusions and suggestions for 
future research are presented in section 5. 

2. Artificial Neural Network Modelling

2 . 1 .  A r t i f i c i a l  N e u ra l  N e t wo r k 
Architecture

Artificial neural networks (ANNs) are a 
method of using computer software to 
learn to recognise patterns in given data 
(Luxton, 2016). ANNs work by creating 
connections between the mathematical 
processing elements, which are referred to 
as neurons (Skias, 2006). ANNs capture the 
inherent information from a considered set 
of variables and learn from the existing data, 
even when noise is present (Garrido et al., 
2014). Thus, the system learns via a process 
of determining the number of neurons or 
nodes and through the adjustment of the 
weights for the connections based upon the 
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training data (Skias, 2006). No formulation 
or a priori model is required (Merkus and 
Meesters, 2014). A neural network can be 
trained to perform a particular function by 
adjusting the values of connections (weights) 
between the elements (Kunt et al., 2011). 
During the training process, the ANN can 
detect complex relationships between the 
input and output data and perform synthesis 
(Sivanandam et al., 2006; Sineglazov et al., 
2013). Once the ANN has been trained on 
the sample of the given data-set, it can make 
estimations through the detection of similar 
patterns in future data. ANNs can detect 
similarities in inputs, despite a particular 
input not ever being seen previously. This 
property provides ANNs with excellent 
interpolation capabilities, particularly when 
the input data may not be exact, that is, noisy 
(BaFail, 2004).  

The most general form of an artificial neural 
network (ANN) used in forecasting is shown 
in the following equation:

Y = F [H1 (x), H2 (x) …., Hn(x)] + u	 (1)

Where, Y is a dependent variable, X is a 
set of explanatory variables, F and H’s are 
network functions, and u is a model error 
term (BaFail, 2004, p. 103).  

The artif icial neural network model is 
characterized by a network of three layers: 
input, output and hidden layers (Sen and 
Sas, 2014; Yang et al ., 2016). Artif icial 
neural networks consist of a large number 
of simple processing elements called neurons 
which are organized into several layers and 
interconnected with each other through 
synaptic weights. Synaptic weights represent 
the intensity of the interaction between 

every pair of neurons, and the activation 
functions calculate the potential of every 
neuron (Garrido et al., 2014; Tiryaki and 
Aydın, 2014).

The most w idely used A NN t y pe for 
prediction is the Multi-Layer Perceptron 
(MLP) model (Kale et al., 2016; Rao, 2011; 
Tiryaki and Aydın, 2014). The MLP is a 
supervised neural network based on the 
original simple perceptron model. The MLP 
is comprised of a system of simple inter-
connecting elements, called neurons, cells 
or nodes. Each of the various inputs included 
in the model are multiplied by a connection 
weight. These products are subsequently 
summed, fed through a transfer function 
in the ANN to generate a result, and then 
the model’s output (Shirgure and Rajput, 
2014, p. 134).

Figure 1 presents the study’s 3-layer 
back propagation network (Remennikov 
and Mendis, 2016; Shirgure and Rajput, 
2014). The first layer is the input layer and 
corresponds to the problem input variables 
with one node for each input variable. The 
second layer is the hidden layer used to 
capture non-linear relationships among 
variables. The third layer is the output 
layer used to provide predicted values 
(Dulikravich and Colaço, 2015). The number 
of neurons in the input layer is equal to the 
number of input variables or independent 
variables, and the number of output neurons 
is equal to the number of output variable(s) 
or dependent variable(s). The input layer 
receives the initial values of the variables, the 
output layer shows the results of the network 
for the input, and the hidden layer carries 
out the operations designed to achieve the 
output (Tiryaki and Aydın, 2014).
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Fig. 1.
The Study’s Artificial Neural Network Structure

The output of the MLP can be expressed 
in mathematical form as per the following 
equation:

	 (2)

In Equation (2), Y is the prediction value of 
dependent variable; Xi is the input value of 
ith independent variable; Wij is the weight of 
connection between the ith input neuron and 
jth hidden neuron; βj is the bias value of the jth 
hidden neuron; vj is the weight of connection 
between the jth hidden neuron and output 
neuron; Ɵ is the bias value of output neuron; 
g (. )and f (. ) are the activation functions 
of output and hidden neurons respectively 
(Tiryaki and Aydın, 2014).

3. Data Collection and Variable Selection

Air travel demand is influenced by a variety 
of exogenous and endogenous factors. Each 
factor is composed of elements that can 
stimulate or alternately reduce air travel 
growth. For passenger air traffic demand 
forecasting purposes, these factors are more 
conveniently categorised into two broad 
groups, those external to the airline industry 
and those within the airline industry itself 
(Ba-Fail et al., 2000). Following an extensive 
review of the literature the following factors 
were selected as candidate variables in 
the ANN modelling: world GDP, world 
population growth, world jet fuel prices, 
world air fares (yield is the proxy variable 
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for t ravel cost), Aust ra l ia’s tou r ism 
attractiveness (as measured by Australia’s 
recorded bed capacit ies at Austral ia’s 
tourist accommodation establishments), 
Au st ra l ia’s  u nemploy ment rate,  t he 
Australian/United States dollar exchange 
rate, the number of outbound f lights and 
Australia’s unemployment size. Australia’s 
outbound passengers are comprised of 
Australian nationals as well as foreign 
travelers. Australia’s unemployment rate 
was included as a candidate variable as 
unemployment rates have been reported as 
being a determinant of air travel demand 
(Clark et al., 2009; McKnight, 2010). 

Three dummy variables were included in 
the modelling to control for the influence of 
the 2000 Sydney Olympic Games (Dummy 
1), and the Commonwealth Games held 
in Melbourne from 15 to March 26, 2006 
(Dummy 2). The first dummy variable 
(Dummy 1) controlled for the influence of 
the Olympic Games held in Sydney in 2000. 
The Olympic Games ran for 17 days (the 
opening ceremony was held on 15 September 
2000). The Paralympics were also staged 
in Sydney over a 12-day period shortly 
after the conclusion of the Olympic Games 
(Madden, 2002). International airlines 
operated extra f lights to Sydney, during the 
Sydney Olympic Games to accommodate 
extra passenger demand. Thus, the dummy 
variable ref lecting the inf luence of the 
Olympic Games is equal to 1 for year 2000 
and 0 otherwise.

The second dummy variable 9/11 (Dummy 
2) controlled for the impact that the tragic 
events of 9/11 had on air travel demand. The 
dummy variable was equal to 1 for year 2001 
and 0 otherwise.

T he t h i rd dum my va r iable (Dum my 
3) accou nted for t he i mpac t of  t he 
Commonwealth Games held in Melbourne 
from 15 to March 26, 2006. The 2006 
Melbourne Commonwealth Games was 
the largest sporting and community event 
held in Victoria’s history (KPMG, 2006). 
International airlines carried participants 
and visitors to Melbourne so they could 
attend Commonwealth Games events. 
Therefore, the dummy variable ref lecting 
the impact of the Commonwealth Games 
is equal to 1 for year 2006 and 0 otherwise.

W hilst the global airline industry was 
adversely impacted by the 2008 and 2009 
global financial crisis, Australia’s outbound 
air travel demand increased from 11.5 million 
in 2008 to 12.0 million in 2009 and to 13.3 
million in 2010. Thus, a dummy variable was 
not included in the modelling. 

The availability of a consistent data set 
a l lows the use of annual data for the 
period 1993 to 2016. The data used in the 
ANN model was sourced from a variety of 
sources. Data on world real GDP and world 
population growth were sourced from 
the International Monetary Fund (IMF). 
Australia’s unemployment numbers and 
recorded bed capacities at Australia’s tourist 
accommodation establishments are from the 
Australia Bureau of Statistics (ABS). The 
Australian/United States dollar data are 
from the Reserve Bank of Australia (RBA). 
The airfare data are from Boeing Commercial 
Airplanes. The data on Australia’s outbound 
international airline passengers are from the 
Bureau of Infrastructure, Transport and 
Regional Economics (BITRE). World jet fuel 
prices (expressed in Australian dollars) were 
sourced from the US Energy Information 
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Administration (EIA). To convert collected 
data from current prices to real or constant 
prices, consumer price index at 2011 constant 
prices was used (Ba-Fail et al., 2000). 

Eleven variables were considered as input 
variables in the artificial neural network 
model: world real GDP, world passenger 
yields (proxy for air fares), world population 
size, Australia’s unemployment numbers, 
Australia’s tourist attractiveness, outbound 
flights from Australia, world jet fuel prices, 
the Australian/United States dollar exchange 
rate, and three dummy variables controlling 
for the inf luence of the 2000 Sydney 
Olympic Games, the impact of 9/11, and the 
Commonwealth Games held in Melbourne 
in March 2006.

2.3. Model Evaluation Goodness-of-Fit 
Measures

Goodness-of-fit (GOF) statistics are useful 
when comparing results across multiple 
studies. These statistics are also beneficial 
when researchers are examining competing 
models in a single study. In addition, GOF 
statistics provide feedback on the level of 
knowledge about the uncertainty involved 
in the phenomenon of interest (Washington 
et al., 2011). Five measures were used in the 
present study: mean square error (MSE), 
the root mean square error (RMSE), mean 
absolute error (M A E), mean absolute 
percentage error (MAPE), and correlation 
coefficient (R) (Kunt et al., 2011; Tiryaki 
and Aydın, 2014). 

	 (3)

	 (4)

	 (5)

 	 (6)

R= 	 (7)

Where ti is the measured values, tdi is the 
predicted values, N is the total number of 

data, and ( ) is the average of the predicted 
values (Tiryaki and Aydın, 2014, p. 104). 

2.4. Artificial Neural Network Training 
and Testing

Training is the algorithmic process in the 
hidden neuron where parameter weights 
can be adjusted appropriately to forecast 
acc u rately.  A mong va r ious t ra i n i ng 
algorithms, the back-propagation is the most 
popular algorithm used (Claveria and Torra, 
2014; Guo and Wong, 2013). The basic idea 
of this algorithm is to propagate a gradient 
of the transfer function back and compare 
actual output from output units with a target 
output, then re-adjust weights backward 
in the network. Weights are adjusted and 
repeated until the mean squared error (MSE) 
between network prediction and actual data 
is close to the target (Tiryaki and Aydın, 
2014).

For the training process, artificial neural 
networks (ANNs) are separated into three 
data sets: training is used for model fitting 
and selection, testing is used for evaluating 
the model’s forecasting ability and validation 
data sets to determine the end-point for the 
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training process to avoid model over fitting 
(Alekseev and Seixas, 2009; Shahin, 2013; 
Tiryaki and Aydın, 2014). In this study, the 
data was randomly divided into a 70:15:15 
ratio (Garrido et al., 2014; Kunt et al., 2011; 
Tiryaki and Aydın, 2014). To adjust the 
synaptic weights and thresholds during the 
ANN training process, each presentation of 
the training samples is called the training 
epoch (Da Silva et al., 2017). 

Insuff icient training of the A NN wil l 
result in inaccurate results (Merilaita, 
2010). Furthermore, over-fitting can be a 
concern with neural network model building 
(Grayson et al., 2015; Merilaita, 2010; Myers 
et al., 2016) as it can lead to predictions that 
are beyond the range of the training data 
(Richter and Weber, 2013). A cross validation 
process was carried out during the training 
phase to avoid model overfitting (Chew et al., 
2011; Efendigil et al., 2009). Cross validation 
defines a method for testing the quality of 
the model during its learning phase, whilst 
at the same time avoiding over-training or 
over-fitting of the model. The principal aim 
of this process is to provide an indicator of 
the quality of the prediction model (Wiart, 
2016, p. 141). The cross-validation data used 
in the study was comprised of randomly 
selected data which were separate to the 
model’s training data (Chew et al., 2011).

The objective of training is to minimize 
the global error such as root mean square 
error (RMSE), mean average error (MAE), 
mean square error (MSE), and mean absolute 
percent error (M APE). A NNs usually 
commence with randomized weights for 
all their neurons. This means that they do 
not know everything and therefore require 
training to solve a particular problem for 
which they are intended. When a satisfactory 
level of performance is reached, training is 

concluded and the network uses these weights 
to decide (Akgüngör and Doğan, 2009). 

The training set was used to adapt the 
synaptic weights of the multilayer network, 
utilising the back propagation of estimation 
errors (Kalogirou, 2014). All inputs were 
inserted into the model and the networks 
trained. During the supervised learning 
process, an error function is defined. The 
synaptic weights values are iteratively 
updated until the provided output tends to be 
the desired, and the error function descends 
along the surface towards a local minimum. 
In this study, the training process stopped 
when it reached 1,000 epochs or 0.01 error 
tolerance (Efendigil et al., 2009). 

To conclude the training phase, a validation 
data set was used. The stopping criterion was 
the mean square error (MSE) of the estimated 
demand with respect to the samples belonging 
to the validation set. The validation set was 
not used in adapting the weight vectors of 
the neural estimator, and was therefore able 
to detect over-fitting in the training phase 
(Alekseev and Seixas, 2009).

For estimating the generalization capacity 
of the ANN forecasting models, a testing 
data set was also used (Da Silva et al . , 
2017). Thus, after the training process was 
completed, a testing process was applied to 
ensure the model accuracy was sufficiently 
reliable. Once the values of the training set 
were determined, a data testing set was fed 
into the model and the output compared to 
the target value. The model was accepted 
if the difference was low enough (Garrido 
et al., 2014). The testing set simulates the 
forecasting of the samples (Alekseev and 
Seixas, 2009). The study’s artificial neural 
network (A NN) model l ing process is 
presented in Figure 2.
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Fig. 2. 
The Study’s Artificial Neural Network Modelling Process 
Source: adapted from (Jiang et al., 2004, p. 7060).

2.5. Artificial Neural Network Transfer 
Function

The transfer function plays an important 
role in ANNs as it produces the output of 
the network. The transfer function or the 
activation in the hidden layer combines the 
inputs and weights values to deliver a signal 
to the output (Terzic et al., 2012). This is 
usually a nonlinear function determining 
neuron output (Garrido et al., 2014; Tiryaki 
and Aydın, 2014). The transfer or activation 

function typically falls into one of three 
categories:

•	 Linear (or ramp);
•	 Threshold;
•	 Sigmoid (Kar and Das, 2016; Terzic et 

al., 2012).

The most frequently used transfer function 
is the sigmoid or logistic function as it 
possesses favourable mathematics properties 
such as montonicit y, continuit y, and 
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differentiability, which are all important 
when training a neural network with gradient 
descent (Priddy and Keller, 2005). An 
activation function is used as a boundary of 
output. These boundaries normally change 
from zero to one [0, 1] or from minus one 
to plus one [-1, +1] according to the type 
of activation function used in the ANN 
(Akgüngör and Doğan, 2009). 

This study used the sigmoid function in 
the hidden layer and the linear transfer 
function in the output layer. The Levenberg–
Marquardt back propagation algorithm 
was used as the training algorithm since its 
convergence is stable and fast (Ruiz-Aguilar 
et al., 2014). The artificial neural network 
(ANN) tool box 8.0 within the framework 
of MATLAB R2012b (The MathWorks, Inc., 
USA.) software was used for modelling and 
simulation purposes.

3. Artificial Neural Network Modelling 
Results

3.1. Structure of the Final ANN Model 
for Predicting Australia’s Outbound Air 
Travel Demand 

The ANN model was developed to predict 
Australia’s outbound air travel demand. 
The MLP model consisted of three layers 
having weight matrix W, bias vector b 
and output vector pi where i >1. Figure 3 
presents the optimum MLP model for 
predicting Australia’s outbound air travel 
demand. The number of each layer is shown 
as a superscript to the variable of interest. 
Following (Kunt et al., 2011), superscripts 
were used for identifying the source (second 
index) and destination (first index) for the 
various weights and other elements of the 
network.

Fig. 3. 
The Structure of the Final Multi-Layer Perceptron Neural Network Model
Source: adapted from (Kunt et al., 2011, p.358)

The weight matrix connected to input vector 
p1 was labelled as input weight matrix (IW1,1). 
The elements of layer 1, such as its bias, 
net input and output have superscript 1 to 
indicate that they were associated with the 
first layer (Kunt et al., 2011).

The matrices of layer weight (LW) and input 
weight (IW) were utilised in the MLP model. 
Data were randomly divided into three parts: 
training, testing, and validation (Alekseev 
and Seixas, 2009; Kunt et al., 2011). The 
MLP model had 12 inputs, 9 neurons in the 
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hidden layers and 1 neuron in the output 
layer. The output layer of the MLP model 
consisted of one neuron representing 
Australia’s outbound air travel demand. As 
noted earlier, 70 per cent of the data were 
used in the training phase. Validation and 
testing data sets each contained 15 per cent 
of the original data.  

Constant input 1 was fed to the bias of each 
neuron. The outputs of each intermediate 
layer were the inputs to the subsequent layer. 
Hence, layer 2 can be analysed as one-layer 
having 8 inputs, 1 neuron and 1 X 8 weight 
matrix W2. The layer can be treated as a 
single-layer network. The layers of a MLP 
play different roles in the prediction process 
(Kunt et al., 2011). The back-propagation 
algorithm was applied to determine errors 
and modification for the weight of the 
hidden layer neurons (Akgüngör and Doğan, 
2009). In this study, p3 was the network 
output of interest and has been labelled as 
y (Rumelhart et al., 1986).  

The objective of this network is to reduce 
error e, which is the difference between t and 
pi in which i >1 and t is the target vector. The 
perceptron learning rule calculates desired 
changes (target output) in the weights and 
biases of the perceptron, given input vector 
p1 and the associated error e. Accordingly, the 
Least Mean Square Error (LMS) algorithm 
adjusts the weights and biases of the linear 
network to minimize this mean square error 
(Kunt et al., 2011).

The error at output neuron j at iteration t 
can be calculated by the difference between 
the desired output (target output) and the 
corresponding real output,  ej (t)=dj (t)-yj (t). 
So, Eq. (8) is the total error energy of all 
output neurons.

	 (8)

Referring to Fig. 3, the output of the k-th 
neuron in the l-th layer can be calculated by 
Eq. (9) in which f2 = log sig and f3 = purelin:

	 (9)

where , nl refers to the number of 
neurons in layer l. For the input layer thus 
holds l =1, , for the output layer l =
3 , . 

The mean square error (MSE) of the output 
can be computed by:

	 (10)

The steepest descent of MSE can be used 
to update the weights by Eq. (11) (Yeung 
et al., 2010):

	 (11)

The MSE performance index for the ANN 
is a quadratic function as shown in Eq. 10. 
Hence, the performance index will either 
have one global minimum, weak minimum 
or no minimum, depending upon the 
characteristics of input vectors (Kunt et al., 
2011). Specifically, the characteristics of 
input vectors determine whether a unique 
solution exists (Hagan et al., 1996).

3.2. Final ANN Model Results 

The final ANN PAX model in this study 
comprised 11 inputs, 8 neurons in the hidden 
layers and 1 neuron in the output layer. The 
final PAX ANN model is presented in the 
following equation
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PAX = -0.326 + 0.12H1 - 0.56H2 - 0.61H3 - 0.07H4 

+ 0.15H5 + 0.56H6 + 0.44H7 - 0.15H8	 (12)

Where: Hn = network hyperbolic tangent 
activation function:

Hn = TANH (Zn) = 	 (13)

Where Zn is calculated by multiplying the 
value of each input by the corresponding 
weight (wi) (Eq.14) (Gonzalez, 2000).

Zn = BiasHn +w1 X1 +w2 X2+ w3 X3+ w4 X4 + 
+w5 X5 +w6 X6 +w7 X7 +w8 X8 +w9 X9 +w10 X10+ 

+ w11 X11 	 (14)

Where: X1 = world real GDP; X2 = world 
population; X3 = World jet fuel prices; X4 
= World passenger yield; X5 = Australia’s 
tourist accommodation establishments; X6 
= Australia’s outbound international f light 
numbers; X7 = Australia’s unemployment 
numbers; X8 = Australian/United States 
dollar; X9 = Dummy variable for Sydney 
Olympic Games; X10 = Dummy variable 
for 9/11; X 11 = Du m my va r iable for 
Commonwealth Games.

T he resu lts of t he PA X M LP model 
are presented in Table 1 in the form of 
a prediction table. Table 1 shows the 
prediction level of Australia’s outbound air 
travel demand during training, testing, and 
validation phases.

Table 1
Prediction of the Outbound MLP Model

R PAX Model

Training 0.99844

Validation 0.99854

Testing 0.99523

All 0.99733

Figure 4 shows the regression plots of the 
PAX model output with respect to training, 
validation and testing data. The value of the 
correlation coefficient (R) for each phase 
was also calculated (Kunt et al., 2011). The 
R value was around 0.997 for the total 
response in the MLP model. The solid 
lines in Figure 4 shows the perfect linear fit 

between actual values and estimated values 
of Australia’s outbound enplaned passengers. 
The correlation coefficient (R) between 
actual values and estimated values is another 
important indicator to check the validity of 
the model. Importantly, when the R value 
is close to 1, forecasting accuracy increases 
(Tiryaki and Aydın, 2014).
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Fig. 4. 
Regression Plots for Training, Testing and Validation Phases and the Total Response in the Outbound 
MLP Model 

Training errors, validation errors and 
testing errors were plotted to determine 
validation errors in the training phase for the 
PAX model (Figure 5). The best validation 
performance in the PAX model occurred 
at epoch 2 with MSE at 4.1x1010 (Figure 
5). The plot in Figure 5 shows the mean 
squared error commencing at a large value 
and decreasing to a smaller value, which 
indicates that network learning is improving. 
The plot in Figure 5 has three lines, because 
all input and target vectors were randomly 
divided into three sets (Garrido et al., 2014; 
Kunt et al., 2011). 70 per cent of the vectors 
were used for training the network. 15 per 
cent of the vectors were used for validating 
how well the network model was generalised. 
Training vectors continues for as long as it 

takes for training to reduce the network error 
on validation vectors. After the network 
has memorized the training set, training 
concludes. This technique automatically 
avoids the problem of over-f itting the 
model, which plagues many optimization 
and learning algorithms (Kunt et al., 2011). 
As previously noted, the training process 
stopped when it reached 1,000 epochs or 
0.01 error tolerance (Efendigil et al., 2009). In 
order to estimate the generalization capacity 
of the neural PA X forecasting model, a 
testing set compromising the remaining 15 
per cent of the vectors was used. This set 
was only presented to the neural estimator 
following conclusion of the training, and 
hence it did not participate in the training 
phase (Alekseev and Seixas, 2009).
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Fig. 5.
The Validation Error in the Outbound Air Travel Demand Model

Australia’s actual and estimated outbound enplaned passengers during 1993 to 2016 are 
plotted and shown in Figure 6.

Fig. 6. 
A Comparison of Australia’s Actual and Estimated Outbound Air Travel Demand

This study used an artificial neural network 
(ANN) to predict Australia’s outbound 
air travel demand. Table 2 presents mean 
absolute error (MAE), mean squared error, 
mean absolute percentage error (MAPE) 

and the root mean square error (RMSE) of 
the estimated model. These results suggest 
that the constructed ANN is promising for 
modelling Australia’s outbound air travel 
demand. 
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Table 2 
The Final Results of the Objective Function in Australia’s Outbound Air Travel Demand ANN Model

Error ANN
MAE 2.3x105

MSE 8.6 x1011
MAPE 2.81 %
RMSE 2.9 x105

3.3. Discussion of Contributing Factors 
that Influence Australia’s Outbound Air 
Travel Demand 

This study used a contribution table (Gately, 
1996) to analyse the major contributing factors 
that inf luence Australia’s outbound airline 
passenger demand. The contribution of factor 
(Ci) in the input layer is the sum of absolute 
values of the weight of connection between 
the input neuron and the hidden neuron.

	 (15)

where: 
Ci is the contribution value of factor i; 
Wij is the weight of connection between the 
ith input neuron and jth hidden neuron. 

The contributing factor scale developed 
by (Gately, 1996) was used to evaluate the 

influences of input variables. Based on this 
scale, any input variable with a contribution 
value less than 2 is considered a weak 
contributing factor while any input variable 
with a contribution value greater than 5 is 
considered a high contributing factor (Chen 
et al., 2012). 

Table 3 shows the contribution value of input 
variables in the PAX model and shows that 
all the input variables in the PAX model 
have a contribution value higher than 2 
which means that no input variables are 
considered a weak contributing factor. Also, 
the four most important input variables 
for forecasting Australia’s outbound air 
travel demand are: X2= World Population, 
X5 = Australia’s tourist accommodation 
establishments, X8 Australian/United 
States dollar exchange rate, and X10 Dummy 
variable for 9/11.

Table 3 
The Contributions of the Study’s Input Variables

Input Variables PAX Model
X1 = world real GDP 2.77
X2 = world population 4.16
X3 = World jet fuel prices 2.76
X4 = World passenger yield 3.42
X5 = Australia’s tourist accommodation establishments 4.95
X6 = Australia’s outbound international flight numbers 3.53
X7 = Australia’s unemployment numbers 2.55
X8 = Australian/United States dollar 4.57
X9 = Dummy variable for Sydney Olympic Games 2.01
X10 = Dummy variable for 9/11 4.21
X11 = Dummy variable for Commonwealth Games 3.42
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4. Conclusions

In the global airline industry, forecasting is 
regarded as one of the most critical areas of 
airline management. The aim of this study 
was for the first time to develop an artificial 
neural network (ANN) models for predicting 
Australia’s outbound international airline 
passenger demand. Based on the use of 
annual data from 1993 to 2016, the ANN 
model was developed and empirically tested 
using the input parameters of world GDP, 
world population, world jet fuel prices, 
world air fares (proxy for air travel cost), 
Australia’s tourism attractiveness, outbound 
f lights, Australia’s unemployment levels, 
the Australian and United States foreign 
exchange rate and three dummy variables. 
The dummy variables were incorporated 
to control for the inf luence of the Sydney 
Olympic Games in 2000, the tragic events 
of 9/11 and the Commonwealth Games, 
which were held in Melbourne in 2006. 
The artificial neural network (ANN) used 
multi-layer perceptron (MLP) architecture 
that compromised a multi-layer feed-forward 
network and the sigmoid and linear functions 
were used as activation functions with the 
feed forward-back propagation algorithm. 
The ANN was applied during training, 
testing and validation and had 8 inputs, 1 
neurons in the hidden layers and 1 neuron 
in the output layer. The data was randomly 
divided into three data sets. 70% of the 
data was used in the training phase with 
the remaining data divided into validation 
(15%) and testing (15%). To identify the 
best-fit model, four goodness-of-fit measures: 
mean absolute error (MAE), mean square 
error (MSE), root mean square errors 
(R MSE), and mean absolute percentage 
errors (MAPE) were used in the study. The 
highest R-value obtained from the ANN 
model is 0.99733, demonstrating that the 

ANN provided a high predictive capability.

Following the recommendations of (Gately, 
1996), this study used a contribution 
table to analyse the factors that inf luence 
Australia’s outbound air travel demand. 
The input var iables w ith the highest 
contributing factor were Australia’s tourism 
attractiveness (4.95), the Australian/United 
States dollar exchange rate (4.57), world 
population (4.16) and the impact of 9/11 
(Dummy variable X10) (4.21). Australia has 
long been a major tourism destination and 
throughout the study’s review period there 
has been a significant growth in tourists 
from China, Japan, New Zealand and the 
USA. Population has a direct effect on the 
size of an air travel market and may cause a 
bias in the estimates if omitted. For instance, 
a large increase in air traffic may ref lect a 
sudden increase in population rather than 
other effects (International Air Transport 
Association, 2008). The months following 
the terror attacks of 9/11, had a significant 
impact of the demand for air travel.   
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