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Abstract: Ramp metering is a very popular and effective way to prevent traffic congestion on 
freeways. Many different control strategies depending on the traffic characteristics and/or 
features of the freeway were implemented. Whatever strategy is used, it must be effective not 
only in terms of preventing traffic breakdowns or supporting recovery from congestion, but 
also of the simplicity of solving the mathematical problem underlying the control strategy. 
The paper introduces DERMS – an approach for a coordinated ramp metering control strategy 
based on solving a non-linear optimization problem. The solution of the described problem 
was found using the Differential Evolution strategy giving a global optimum for non-linear 
and non-differentiable or multimodal functions. Numerical experiments were made using data 
from a freeway section in Germany operated by a ramp metering system. The results proved 
the effectiveness of the proposed approach compared with local ramp metering strategies.
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1. Introduction

R amp metering is a ver y popular and 
effective way to prevent traffic congestion 
on freeways. It is employed mainly for 
reducing delays for the users of high-volume 
freeways at critical times, improving safety 
by managing merging traffic as well as 
decreasing the number of traffic accidents 
and the consequential influences. Based on 
various assumptions and techniques, many 
different control algorithms were proposed. 
Ramp metering systems differ in the data 
used as control parameters, the schedule in 
which they should be applied, the areas where 
they function, and – in case of coordinated 
operation – the type of cooperation. 

Depending on the data which a particular 
control strategy uses, it is possible to 
deter m ine f i xed-t y pe, adapt ive, and 
predictive policies. The fixed-time control 
methods are usually based on historical data, 
which include various drivers’ behavior 
patterns. Adaptive algorithms calculate 
the required metering rates by adjusting to 
real-time conditions such as speed, volume, 
capacity, or other parameters. Finally, in 
predictive strategies, current data are 
analyzed and depending on the results new 
short-term metering rates for the next step 
are produced. 

The areas where ramp metering algorithms 
are applied define the level of operation. If 
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a single ramp operates independently and is 
not connected with neighboring entries, it 
is controlled locally, e.g. with the Demand-
Capacity (Aghdashi, 2013) or the ALINEA 
(Papageorgiou et al . , 1991) algorithm. 
When various ramps are linked, they can 
be controlled connectedly to improve local 
strategies. There are three ways to connect 
control in order to get a better service quality 
within the freeway:

• I n t he cooperat ive st rateg y, t he 
previous ramp upstream reacts to the 
pre-congested situation downstream 
reducing the metering rate to support 
the next ramp. This strategy is applied 
by the Helper (Lipp et al., 1991) and the 
MILOS (Lipp et al., 1991; Ciarallo and 
Mirchandani, 2002) algorithms.

• Competitive algorithms are based on 
a comparison between the calculated 
metering rates. These ideas are realized 
in the SWARM (Bertini et al., 2008) 
and the Bottleneck (Lipp et al., 1991; 
Hochbaum and Woeginger, 1999) 
algorithms.

• The integral mechanism is used to find 
a consensus between the local optimal 
strategies and the system-wide strategy. 
The best known algorithms are the 
linear programming scheme (Lipp et 
al., 1991; Bogenberger and May, 1999) 
and METALINE (Papageorgiou et al., 
1990).

Ramp metering strategies must be effective 
in different contexts. First of all, metering 
a ramp is only reasonable when entering 
vehicles produce a congestion situation on 
the main roadway and no large delays on 
the entry ramps are caused by the control 
strategies. Secondly, the control algorithms 
should be chosen in consideration of the 

particular traffic characteristics and the 
geometry of the freeway. Last but not least, 
one of the most important requirements 
is the simplicity of the way in which the 
mathematical problem underly ing the 
strategy could be solved. 

The paper presents an approach to establish 
a managing strategy for coordinated ramp 
metering based on solving a non-linear 
optimization problem. This problem is 
formulated to find the metering rates for all 
entry ramps within a freeway facility, taking 
into account the facility as a complete system. 
The solution to the optimization problem 
is found using the Differential Evolution 
strategy giving a global optimum for non-
linear and non-differentiable or multimodal 
functions possessing good convergence at the 
same time. The proposed strategy is called 
DERMS (Differential Evolution based Ramp 
Metering Strategy).

2. Methodology

2.1. Freeway Facility Description

We consider a freeway facility with a ramp 
metering system controlling the access to 
the main roadway from all entry ramps. 
Depending on the traff ic volumes and 
other factors, the ramp metering system 
can be either active or not. Therefore, 
activation parameters are defined and set 
for the freeway facility based on its traffic 
characteristics and geometry, the weather 
conditions, and other factors. For detecting 
optimal metering rates from the global point 
of view, it is proposed to use the solution 
of a mathematical optimization problem, 
which determines the minimal travel time 
(including delays on the entry ramps) for 
traversing the whole facility. 
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Figure 1 demonstrates a part of a freeway 
with entry and exit ramps. The investigated 
main roadway is divided into sections of two 
types. This division is characterized by the 
location of the entry ramps.

(I) Sections of the first type consist of an 
exit ramp and the following segment up to 
the next entry ramp. The traffic volume in 
this case can be calculated as the difference 
between the volume upstream of the exit 
ramp and the volume of the exiting traffic. 

(II) Sections of the second type, which start 
where vehicles from the ramp enter the main 
roadway and end at the next exit, are more 
important in terms of optimization, because 
the traffic volume depends on the calculated 
ramp metering parameters. Sections of both 
types have a total travel time which must be 
calculated in an on-line regime according to 
the current traffic conditions. Delays in the 
entry ramps, which are caused by the ramp 
metering system, are referred to sections 
of type II. 

Section I Section II

Fig. 1. 
Structure of a Freeway Segment

In contrast to other similar methods to 
find optimal regimes, which use only local 
information or the linked combination of local 
entry access schemes, the presented policy 
supposes using all the information from the 
controlled freeway facility as a whole. For this, 
an analytical model consisting of different 
approaches to estimate the travel time on the 
main roadway and the delays on the entry 
ramps is applied. The segment capacities 
were estimated with the stochastic capacity 
estimation technique based on models for 
censored data by (Brilon et al., 2007). 

2.2. Estimating the Travel Time on the 
Main Roadway

The applied approach to estimate the total 
travel time is based on distinguishing 

bet ween travel t imes in f lu id t ra f f ic 
conditions, which depend on the length of 
the segment, and travel time losses during 
congestion, which only depend on the 
volume-to-capacity ratio (Geistefeldt and 
Hohmann, 2014) (eq. 1):

,
( )

,loss
crit

L q for fluid traffic conditions
v q

t
L q t for congested traffic conditions

v

 ⋅ ⋅∆= 
 ⋅ ⋅∆ +


 (1)

where: t is total travel time (veh∙h), L 
is segment length (k m), v(q) is speed 
(km/h), q is traffic volume (veh/h), ∆ is 
interval duration (h), vcrit is critical speed at 
capacity (km/h), tloss is congestion-related 
travel time losses (veh∙h). For the calculation 
of the average travel speed in f luid traffic 
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conditions, the fol lowing speed-f low-
relationship from the German Highway 
Capacity Manual (HBS, 2015) is used (eq. 2):

( )

0

0

0 0

( )
1

v
v q

v
L C q

=
+

⋅ −

, (2)

where: v(q) is average speed (km/h), q is 
traffic volume (veh/h), v0, L0, C0 are model 
parameters.

The parameters of the speed-flow-model (2) 
depend on the gradient, the speed limit, the 
location of the freeway inside or outside of 
urban areas, and the percentage of trucks. 
They were taken from the (HBS, 2015).

The congestion-related travel time losses are 
estimated (eq. 3) with the following model 
(Geistefeldt and Hohmann, 2014):

( , ) 0.9 ,
B

loss
qt q c A
c

 = ⋅ − 
 

 (3)

where tloss is congestion-related travel time 
losses (veh∙h), q is traffic volume (veh/h), c is 
capacity (veh/h), A, B are model parameters.

For the model parameters, va lues of 
A=60,000 and B=3 were found to be 
representative for different types of freeways 
in Germany in previous research (Geistefeldt 
and Hohmann, 2014).

2.3. Estimating Delays on Entry Ramps

The delay due to the metering on the entry 
ramps can be estimated in the same way as 
a delay at the approach of an uncontrolled 
intersection (when the ramp metering 
system is turned off) or of a signal controlled 

intersection (when the system is turned 
on). These delays depend on the volume-
to-capacity ratio and are calculated (eq. 4) 
with the model from the (HCM, 2010):

2
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 (4)

where: d(q) is average delay time (s), C is 
phase cycle time (s), g is green time within 
the cycle time (s), (always equal to 2 s in 
Germany), q is traffic volume (veh/h), c is 
capacity (veh/h), T is duration of analysis 
period (h), k is incremental delay factor 
that is dependent on controller settings, I 
is upstream filtering/metering adjustment 
factor.

According to the methods for the traffic 
f low quality assessment of freeways given 
in the HBS (2015), which are based on the 
analysis of 1-hour intervals, the parameter T 
of the model (4) is set to 1 hour, and for the 
same assumptions the parameters k and I are 
set to 0.5 and 1, respectively. This formula 
can be used in both cases of estimation for 
controlled and uncontrolled entry ramps. 
The first component includes the delay 
caused by the signal control (and is zero 
without control), and the second component 
is the additional delay caused by a traffic 
demand volume exceeding the capacity. The 
entry capacity should be calculated (eq. 5) 
based on the saturation f low if the ramp 
metering system is being activated as 

,gc s
C

= ⋅  (5)

where: s is saturation f low (veh/h); and 
should be taken as a constant value when 
the system is deactivated.



72

Sysoev A. et al. Differential Evolution Approach to Calculate Optimal Ramp Metering Rates

2.4. Modeling Freeway Segments as 
Queueing Systems

To quantify the total travel time, the travel 
time on the main roadway and the delay on 
the entry ramps have to be summed up. The 
volumes measured at the detectors on the 
entry ramps and on the main roadway serve 
as input data for the optimization model. For 
each time interval (here: 1 minute), both 
travel time components are calculated with 
the models (1) and (4), respectively. 

In contrast to the classical stochastic 
approach based on a Poisson distribution 
for the arriving process and some stochastic 
distribution for the explanation of the 
service time, the deterministic (systematic) 
mechanism assumes to use a constant fixed 
arriving time for every request (vehicle) 
in a system and constant times for the 
service process. The assumed deterministic 
queueing system is a D/D/1 queue with 
deterministic arrivals and deterministic 
service times at 1 server.

Figure 2 i l lustrates how deterministic 
queueing systems were applied for modeling 
the different segment types. The following 
two types of queueing systems were defined.

QS Type 1: D/D/1 queueing system used to 
model the traffic f low on the main roadway. 
The main traffic f low characteristics on the 
main road (traffic volume etc., see Models 
(1)-(3)) are taken as input parameters. As 
an output parameter, the total travel time, 
estimated with Equation (1), is determined. 

QS Type 2: D/D/1 queueing system used to 
model the traffic f low on the entry ramps. 
Delays on the entry ramp arise because of 
a high volume on the main roadway and/
or ramp metering. By varying the ramp 
metering control parameters, it is possible 
to minimize the service time.

The aim of formulating the problem is to 
find optimal regulation parameters for the 
Type 2 queuing systems to provide a higher 
level of quality for the whole freeway facility.

Section I Section II

QS 
Type 1

QS 
Type 1

QS 
Type 2

Fig. 2. 
Types of Queueing Systems

2.5. Testing Environment

The analytical model derived for the ramp 
metering control optimization was also used 
as a testing environment to compare the 
coordinated DERMS approach with a local 

control strategy. The traffic demand was 
estimated based on data from automatic 
loop detectors in 1-minute intervals. The 
segment capacities were estimated based on 
the concept of stochastic capacities, where – 
in contrast to deterministic capacities used in 
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traffic engineering guidelines – the capacity 
is regarded as a random variable (Brilon et al., 
2007). By randomly generating the segment 
capacity values in the simulation, a total 
of 1000 simulation runs was carried out in 
order to receive a realistic distribution of 
congestion occurrence.

3. Mathematical Model and its Solution

3.1. Optimization Problem Statement

The problem descr ibed above can be 
considered as a non-linear multidimensional 
constrained global optimization problem 
with the following formulation (eq. 6):

1
min ( ( ) ( ))

n

m

j j
x R j

t x d x
∈ =

+∑  (6)

and the following constraints:

min max ,

( ) 0,
( ) 0,

x x x

g x
h x

 ≤ ≤ ≤
 =

 (7)

where: tj(x) is total travel time within the 
segment j (veh∙h), dj(x) is average delay time 
on the approach within the segment j (veh∙h), 
x is vector of optimal cycle times for the 
investigated part of the freeway (s), xmin, xmax 
are minimum and maximum limitations of 
the cycle times (s), h(x), g(x) are equality and 
inequality constraints functions.

The formulation (6)-(7) is a general one. In 
every particular case, different additional 
equality and inequality constraint functions 
could be taken into account. For the 
investigated freeway section in Germany, 
a connection inequality relation for entry 

ramps, which control the access to the main 
roadway and function as a coordinated 
system, was used. 

To find the solution of the problem (6)-(7), 
both analytical and numerical algorithms 
may be applied. The only limitation for 
using an analytical approach is the non-
differentiability of the function estimating 
the delay on the entry ramps in case of 
congestion. Before the volume-to-capacity 
ratio equals 1, the problem (6)-(7) could 
be solved with traditional methods such as 
the Lagrange multipliers approach. But it is 
more complicated than applying numerical 
schemes. Therefore, the Dif ferent ia l 
Evolution method was chosen, which uses 
main techniques of genetic algorithms 
and ideas of non-using the gradient of the 
function being optimized. Further concept 
outlines of this method are given below. 

3.2.  Global  Opt imizat ion by  the 
Differential Evolution Approach

Differential Evolution is a direct search 
procedure based on main ideas of genetic 
algorithms. That is why it could be used 
to f ind an opt imum solut ion of non-
differentiable, non-linear or multimodal 
functions under certain conditions. Similar 
direct strategies like those by (Nelder and 
Mead, 2004) or by (Hooke and Jeeves, 2014) 
use the greedy criterion to decide whether the 
optimal parameters are found and, because of 
a fast convergence, have a risk to be trapped 
into local optima. In contrast to them, the 
Differential Evolution strategy guarantees 
finding a global optimum if it exists. This 
algorithm was first proposed by (Storn and 
Price, 1997) and then developed further. 
Good practical optimization procedures 
should fulfill the following requirements: 
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• the ability to handle different types of 
cost functions, including non-linear, 
non-differentiable and multimodal, 

• the possibi l it y to para l lel ize the 
computation of cost functions, 

• simplicity in setting control parameters 
and 

• good convergence properties. 

Differential Evolution was designed to be a 
stochastic direct search method. It means 
that only the value of the function but not 
the derivatives in every step is used and 
the method can be applied to different 
types of cost functions. This scheme uses a 
vector of optimized values where stochastic 
perturbation of this vector could be done 
independently within different processors 
of even different computers. Principles 
of setting control parameters are very 
transparent and could be modified in every 
specific problem; so that the Differential 
Evolution approach is appl icable and 
adaptive. Many practical tests for classical 
well known and non-classical specific cost 
functions allow considering a very good 
convergence of the described optimization 
method.

Let us give a basic scheme of the optimization 
by usi ng t he Di f ferent ia l  Evolut ion 
approach (1997). For every generation, an 
N-dimensional parameter vector xi,G, i=1,…
,NP is produced. At each step, mutation, 
crossover, and selection are used. The 
initial population vector should be chosen 
randomly from the set of possible solutions. 
This technique generates a new parameter 
vector by adding a weighted difference of 
two vectors to the third. This operation is 
called mutation (eq. 8):

( )1 2 3, 1 , , ,i G r G r G r Gv x F x x+ = + ⋅ −  (8)

w h e r e :  , 1i Gv +  i s  m u t a t e d  v e c t o r , 

1 2 3, , ,, ,r G r G r Gx x x  are population vectors with 
random indexes { }1 2 3, , 1, ...,r r r NP∈ , F is positive 
constant parameter, which controls the 
differential variance, F∈[0;2].

The parameters of the mutated vector should 
then be mixed with the parameters of another 
predetermined vector to build a trial vector. 
This trial vector is (eq. 9):

( ), 1 1 , 1 , 1, ...,i G i G Ni Gu u u+ + +=  (9)

where: 
( )
( )

, 1
, 1

,

( ) ( ),
1,..., ,

( ) ( ),
ji G

ji G
ji G

v if rand j CR or j rnbr i
u j N

v if rand j CR or j rnbr i
+

+

≤ == =
> ≠

rand(j) is the jth evaluation of a uniform 
random number, CR is crossover constant 
which has to be determined, CR ∈ [0;1], a 
bigger value of CR gives faster convergence 
(in case if it occurs), rnbr(i) is randomly 
chosen index, which ensures that ui,G+1 gets 
at least one parameter from vi,G+1.

If the trial vector delivers a lower cost 
function value (in case of minimization) 
than the vector from which it was produced, 
the trial vector replaces that vector in the 
following generation. This operation is 
called selection. Successful combination of 
the three operations above may construct 
effective and fast algorithms to solve the 
considered problem.

3.3. Practical Application 

The numerical solution of the problem 
formulated above by the Dif ferentia l 
Evolution approach was applied to find the 
optimal cycle time for every entry ramp 
within the investigated freeway facility. 
The optimal parameters were obtained by 
adjusting the current cycle times at every 
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accessible time interval. There are no severe 
restrictions for choosing the time intervals 
to be used. Conducted computer simulations 
showed that the time required to find an 
optimal solution is less than 1 sec. Hence, 
this approach is applicable in online ramp 
metering control systems. 

4. Numerical Experiments

4.1. Data Description

The experimental data for the numerical 
analysis were taken from a 16 km stretch of 

freeway A 57 near Krefeld, Germany, which 
is operated by a ramp metering system. 
This system contains 5 entry ramps. 2 of 
these ramps are connected and lead into 
the same merge point (Figure 3). For the 
optimization procedure and the following 
analysis, traffic data collected by detectors 
located before and after the merge points 
and on the entry ramps were used (Figure 4). 
Traffic f low data in 1-minute intervals from 
both congested and uncongested periods 
in the morning peak hour were used. To 
simulate and optimize the system, the free 
software R was used.

Part 1
1 entry ramp

Part 2
2 entry ramps

Part 3
1 entry ramp

Part 4
1 entry ramp

Fig. 3. 
Layout of the Investigated Freeway Facility

Fig. 4. 
Flow Rates within Part 3 of the Investigated Facility

4.2. Optimization Results and Comparison 
with Other Strategies

The found optimal metering rates were 
applied to calculate the total travel times 
on the main roadway and on the entry ramps. 

Firstly, the advantage of the described method 
DERMS in comparison with not using ramp 
metering at all was investigated. Then the 
results were compared with applying the local 
algorithm ALINEA. Hence, the following 
three scenarios were investigated: 
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• Scenario A: Ramp metering system is 
deactivated;

• Scenario B: Applying local algorithms 
(ALINEA);

• Scena r io C: Usi ng t he proposed 
coordinated control strategy (DERMS). 

Comparing the results for scenarios A and 
C, Figure 5 shows the relationship between 
increasing delays on the entry ramps and 
decreasing travel times on the main roadway. 
In the diagram, 10 time periods of 30 minutes 
each are distinguished. The increments of 

delays on the entry ramps are less than 1 
minute, while the maximum benefit on the 
main roadway, reached towards the middle 
of the investigated period, is close to 10 
minutes.

Results of the comparison of the ALINEA 
and DERMS algorithm (scenarios B and C) 
are given in Figure 6. ALINEA results in 
smaller delays than DERMS on the entry 
ramps, whereas the DERMS approach leads 
to a significant reduction of travel times on 
the main roadway.

Fig. 5. 
Differences of the Per-Vehicle Delays on the Entry Ramps and on the Main Roadway Between the 
Scenarios C (DERMS) and A (No Ramp Metering)

Fig. 6. 
Differences of the Per-Vehicle Delays on the Entry Ramps and on the Main Roadway Between the 
Scenarios C (DERMS) and B (ALINEA)
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The application of different scenarios was 
investigated both during the whole analyzed 
5-hour period (5:00 to 10:00 a.m.) and for 
peak traffic conditions. The obtained results 
are presented in Figure 7, indicating the 
percentages of simulation runs for which 
the respective control scenarios delivered 
the lowest total travel time losses.

For the whole analyzed time period, the 
deactivation of the ramp metering system 
(scenario A) resulted in the lowest total 
travel time in 29.5% of the simulation runs. 
This can be explained by including time 
intervals prior to and after the peak hours. 
In 5.1% of the simulation runs, scenarios 

B and C delivered the same result because 
of the existence of a minimum solution 
on the lower bounds of possible solutions. 
Scenario B was most effective in only 7.8% 
of the simulation runs, whereas the proposed 
DERMS approach (scenario C) was most 
effective in 52.1% of the simulation runs. 

Investigating the ef fectiveness of the 
scenarios only during peak traffic conditions, 
it was found that in 87.7% of the simulation 
runs, the DERMS algorithm delivered the 
best solution. In 1.7% of the simulation runs, 
the scenarios A and C gave the same best 
result, while both scenarios B and C were 
equally effective in 4.6% of the cases.

Fig. 7. 
Comparing the Effectiveness of the Investigated Control Scenarios: Percentages of the Simulation Runs 
in Which the Respective Ramp Metering Control Scenario Delivers the Lowest Total Travel Time Losses

5. Conclusions and Outlook

Ramp metering strategies differ considerably 
with traffic flow conditions, areas of practice, 
possibilities of adaptation etc. One of the main 
ideas of every policy is the simplicity of solving 
the problem on which the algorithm is based. 
In the paper, a strategy for coordinated ramp 
metering based on the formulation of a global 
optimization problem for a freeway facility and 
solving the global optimal with the stochastic 
approach grounded on the Differential 
Evolution procedure was proposed.

A f reew ay sec t ion i n Ger ma ny w a s 
investigated for determining optimal 
metering rates with the proposed strategy 
DER MS. To prove it s ef fect iveness, 
calculations applying no ramp metering, the 
local algorithm ALINEA and the coordinated 
strategy DERMS were conducted. Based on 
1000 simulation runs of randomly generated 
traffic demand and capacity time series, the 
resulting travel time losses were analyzed. 
In 57.6% of the simulation runs, DERMS 
resulted in the lowest travel time losses. 
Considering only peak traffic conditions, 
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DERMS even gave the best result in 87.7% 
of the simulation runs.

Combining good convergence in finding the 
global optimal solution and high effectiveness, 
DERMS gives the excellent possibility to 
prevent traffic congestions on freeways. 
It could be easily applied within a freeway 
segment containing multiple metered ramps. A 
comparison of the proposed DERMS approach 
with existing strategies for coordinated ramp 
metering will be subject to future research.
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