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Abstract: Urban congestion is being increased by a rapid growth in travel demand and a limited 
ability to expand physical infrastructure. If transportation agencies could accurately quantify 
the impacts of various congestion causes, they would be able to prioritize their strategies more 
efficiently. The Federal Highway Administration developed a well-known congestion causal 
pie chart in 2004, but this development process did not have extensive access to field data. 
Recent advancements in both traffic measurement technologies and data-driven analysis are 
making it possible to quantify congestion impacts more accurately. However, an assessment of 
congestion causes on signalized arterials presents many challenges, due to complexity of the 
required data and the interaction of traffic demand and control. The objective of this study is 
to create congestion pie charts which demonstrate the proportion of average experienced delay 
components on arterial corridors. A multivariate linear regression model of observed delay 
is used to demonstrate contributing factors to arterial street congestion. The methodology 
is explained using a section of Broward Boulevard in Fort Lauderdale, FL. The findings from 
the model demonstrate that a considerable part of arterial congestion can be attributed to 
travel demands and intersection signals. 
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1. Introduction

Let us take, for example, a hypothetical 
situation in which a person travels home 
from a late-night meeting. He/she is taking 
his/her regular route through a heavily 
used arterial street. With the entire major 
street signals resting in the green phase, 
and very light traffic, he/she passes through 
the arterial in almost no time. We say this 
person experienced the free-flow travel time. 
On the next day, this same commute takes 
much more time due to heavy traffic, but 

no irregular conditions. On the day after 
tomorrow, he/she experiences delays in 
the same PM peak due to an incident or 
work zone, and again on the following day 
because of heavy rain or snow/slush. The 
story continues every day by experiencing 
delay with and without presence of irregular 
causes.

We all have experienced relatively long 
commutes, a significant portion of which 
may take place on arterial (signalized) 
streets. We all have wondered what creates 
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congestion during these commute times. The 
most intuitive answer would be many other 
vehicles want to travel at the same time on 
the same road. However, it is certain that 
some nonrecurring factors such as inclement 
weather, traffic incidents, or work zones 
can significantly increase our travel times. 
On the other hand, some control measures 
such as traffic signals can add to the delay. 
They are there to produce safe movements 
through intersections and to serve as many 
vehicles as possible, but both of these 
goals may conflict with our objective to go 
through a corridor in the shortest possible 
time. Finally, traffic demand itself can be a 
nuisance (e.g. traffic causing difficulty with 
changing lanes) or major impedance (traffic 
from the downstream segment has spilled 
back to our link and we cannot move). How 
much does each of these factors contribute 
to our experienced delay on a daily basis? We 
cannot easily answer this question.

Even though a number of studies quantified 
most major causes of travel delay on freeways, 
no comprehensive attempts were found for 
quantifying arterial congestion causes. The 
objective of the study is to find out how 
much each of these factors contributes to 
the average commuting delay on arterial 
streets. The methodology is based on the 
linear regression to model observed delay 
as a function of various recurring and 
nonrecurring factors. The contribution of 
each factor is based on impact magnitude 
and the statistical frequency of factor 
occurrence. Impact magnitude is derived 
from the regression model, and the frequency 
of occurrence is estimated by averaging the 
value of the factor over the entire data set. 
Such identification provides quantitative 
insight into the cause of delay in the given 
arterial corridor as a pie chart and provides 

guidelines to congestion mitigate strategies. 
For example, suppose the method results 
indicate that for the arterial corridor, 50% 
of delay is due to traffic demand, 10% is due 
to suboptimal signal timing, 20% is due to 
work zone, and the remaining 20% is due 
to incident. In such an example, it could be 
said that if retiming signals were operative 
under their optimum plan, a 10% reduction 
in average experienced delay would occur. 
The methodology to quantify contributions 
of individual congestion causes is applied on 
a well-ITS-equipped, signalized arterial in 
Central Broward, FL. The research presented 
here is based on a significant amount of 
ITS data from various detection devices 
(e.g. mid-block detectors and Bluetooth 
travel-time readers) and four months of 
event logs collected and reduced by Traffic 
Management Center staff.

2. Literature Review

Congestion in the transportation realm is 
defined as a reduction in operating speeds 
below the normal (or free f low) speed. 
Despite the importance of understanding 
and identifying arterial corridor congestion 
causes, previous studies have focused mostly 
on freeway congestion causes, travel time 
variability causes, and non-recurrent factor 
effects. (Kwon et al., 2006) computed the 
components of congestion along a freeway, 
dividing the total congestion delay into six 
categories: incidents, special events, lane 
closures, weather, potential delay reduction 
due to bottlenecks, and remaining delay. 
(Skabardonis et al ., 2003) considered a 
freeway section’s total congestion as the 
additional vehicle hours spent driving below 
60 mph. They concluded that incident-
related causes were responsible for 13 to 30 
percent of total congestion during the peak 
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period. (Chow et al., 2014) conducted an 
empirical study of urban traffic congestion 
in Central London, using an automatic plate 
number recognition system. The study 
proposed to interpret congestion and its 
causes through a linear regression model. 
The results suggested that 15% of congestion 
was caused by accidents, road work, and 
special events.

Building on their previous research, (Kwon 
et al., 2011) proposed a freeway corridor-
level approach to attribute travel time 
variability to different causes: incidents, 
weather, work zones, special events and 
inadequate capacity. Similarly, (Hasan et 
al., 2011) presented a travel time variations 
prediction model based on individual vehicle 
speeds retrieved from multiple sources. The 
model-related travel time variability was 
attributed to vehicle type, traffic density and 
traffic composition, based on a nonlinear-
latent-variable regression model. However, 
researchers admittedly neglected the 
presence of signals and turning movements 
due to data sources’ limitations. (Alvarez 
and Hadi, 2012) studied the metrics of 
reliability and indicated that travel time 
distributions vary among periods due to 
congestion, traffic f low and incidents. 
Furthermore, (Taylor and Somenhalli, 2014) 
estimated day-to-day travel time variability 
using Burr distribution properties and the 
Burr regression technique. Urban arterial 
travel time variability in Adelaide was 
modeled by considering traffic variables 
such as link length, congestion index and 
degree of saturation. (Hojati et al., 2016) 
developed a travel time reliability measure 
to calculate the extra travel time caused 
by traffic incidents. They found that each 
incident type’s EBT behavior followed 
specific patterns based on characteristics 
of the incidents.

(Anbaroglu et al., 2014) designed a non-
recurrent congestion events detection 
methodology to accurately account for large 
urban corridor non-recurrent congestion. 
The authors developed a Link Journey Time 
measure, concluding that those at least 
40% higher than expected were probably 
caused by non-recurring events. (Agarwal 
et al . , 2005) used detector occupancy 
information, weather data, and pavement 
surface conditions to estimate capacity and 
speed decreases, due to varying intensities of 
rain and snow. (Chin et al., 2004) addressed 
the impact of inclement weather on freeway 
congestion, and concluded that light rain 
or snow, heavy rain and heavy snow reduce 
traf f ic speed by 10%, 16%, and 40%, 
respectively. (Goodwin, 2002) presented 
a literature review about weather effects 
on traffic f low on arterial roadways. The 
research concluded that traffic volume 
demands and f low rates are reduced by 6% 
to 30% during adverse weather conditions.

To s u m m a r i z e ,  m a ny s t u d ie s  h av e 
investigated the causes of congestion and 
quantified its contribution to delays and 
travel times. However, this paper presents 
a unique study which analyzes such causal 
contributions to arterial street congestion 
for the f irst t ime based on signif icant 
amount of ITS data collected in the field. 
This study is different than similar previous 
researches in various aspects. In the current 
research, each of recurrent and non-recurrent 
congestion causes categories were broken to 
specific factors such as travel demand, signal 
existence, suboptimal signal timing, number 
of access points (recurrent), adverse weather, 
work zones, and traffic incidents (non-
recurrent). In addition, inclusion of signal 
existence and suboptimal signal timing as 
factors contributing to delay is what has not 
been observed in previous researches.
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3. Arterial Congestion

Congestion on arterial (signalized) streets 
can be caused by various factors. Unlike 
on freeways (where congestion is mainly 
a result of high traffic demand (V/C > 
1), work zones, incidents, special events 
and inclement weather) congestion on 
signalized roads can be also caused by 
signal timing and interaction with access 
points. Understanding the causes of observed 
congestion is the first important step to 
deploying an appropriate transport strategy 
to improve arterial road traffic. In this study, 
the goal is to develop a regression-based 
method to decompose observed congestion 
into different causes.

In order to examine the different components 
of congestion, an indicator to quantify the 
degree of congestion is needed. In this study, 
delay was used as the measure of congestion. 
Delay can be defined as actual travel time 
minus free-flow travel time. Generally, free-
flow travel time is presented as the minimum 
time required for a vehicle to traverse a 
roadway. Some studies calculate free-f low 
travel time as a function of length and speed 
limit (Palacharla and Nelson, 1999; Lin et 
al., 2004). In this study, free-flow travel time 
is estimated based on the corresponding 
segment lengths and a ‘free f low speed’ 
classified as the speed limit.

Arterial Traffic Data

Fig. 1 shows the arterial road as a part of 
Broward Boulevard in Fort Lauderdale, FL. 
This corridor is approximately 3.6 miles long, 
and represents a major east/west connection 
from SR-7 (US-441) to Andrew Avenue. In 
this study, only the main street is considered 
without consideration of the turns and minor 
movements, due to the lack of information 

and data on other movements. This road 
consists of f ive continuous segments 
separated by MVDS (Microwave Vehicle 
Detection System) mid-block detectors to 
collect volume data. 

The collected data along this corridor is 
associated with each segment separately. 
Travel time data in this corridor is collected 
by Bluetooth devices. Bluetooth-based travel 
time measurement involves identifying and 
matching the Median Access Control (MAC) 
address of Bluetooth-enabled devices carried 
by motorists as they pass a detector location 
(Malinovskiy et al., 2010). The travel times of 
vehicles between two detectors are estimated 
by matching the MAC address. The travel 
times are processed and stored in 15-minute 
averages. 

This study covers a set of data f rom 
September-December of 2014. Fig. 1 presents 
the average travel time and free-f low travel 
time (FFT) associated with each segment 
along the corridor in both E-W and W-E 
directions. The relative variations of average 
travel time with respect to FFT at various 
times of day are different in each segment. 
In some segments and times of day, the 
drivers travel at average speed lower than 
speed limit, which can be an indication of 
congestion and congestion contributing 
factors. 

Consider ing var ious segments which 
are dif ferent in length and number of 
intersections, demonstrates that distance of 
travels and intersections’ signals are effective 
factors on travel time. Moreover, comparing 
the travel time variations in east direction 
with west direction reveals that in AM peak 
commuters in the east direction, and in 
PM peak the commuters in west direction 
experience more travel time.
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3.2. Congestion Measure - Delay

In general, factors contributing to arterial 
congestion can be categorized as recurrent 
and non-recurrent factors (Hasan et al., 
2011). Recurrent congestion refers to 
congestion that commuters experience 
on a regular basis. In this study, recurrent 
congestion causes include travel demand, 
control congestion and access points. The 
control delay is the component of congestion 
that results from the type of control at the 
intersection. In this study, the control 
delay is separated into delay due to signals 
existence and delay due to the suboptimal 
signal timing plan. Causes of non-recurrent 
congestion include closures due to roadwork, 
traffic incidents, and adverse weather. 

The methodology applies to a continuous 
arterial corridor divided into n segments 
which are equipped with Bluetooth devices 
and MVDS (Microwave Vehicle Detection 
System) mid-block detectors indexed i=1,…, 
n. Volume and travel time were measured 
and averaged for every 15-min interval 
indexed t=1, …, T. At segment i at time 
period t, delay was defined as travel time 
minus free-f low travel time. Travel time 
at segment i at time period t is the average 
travel time of all collected Bluetooth data 
at the corresponding segment and time 
period. Noted, the authors are aware of the 
bimodal value of travel time on arterial roads; 
essentially in correlation with making the 
green wave and missing the green wave. This 
value was indirectly considered in this study 
by using average travel time at segment i at 
time period t.

Considering the delay definition, in this 
study the goal is to answer how much each 
factor contributes to average experienced 

delay. The delay at segment i at time t is 
defined as Eq.(1), Eq.(2):

 (1)

 (2)

where: D(i,t): Delay in segment i at time 
period t (second), TT(i,t): Average travel 
time in segment i at time period t (second), 
FFT(i): Free f low travel time in segment i 
(second), l(i): Length of segment i (mile), 
v(i): Speed limit in segment i (mph).

The hourly delay variation over all corridor 
segments dur ing the study per iod is 
presented in Fig. 2. Each box represents the 
statistics over the corresponding time of day. 
The central line of each rectangle indicates 
the median data value. The bottom and the 
top of the rectangles refer to the 25th and 
75th percentile of data, respectively. The 
upper and lower whiskers indicate the largest 
and smallest non-outliers (1.5 times the 
interquartile range) in the data set. Any data 
points beyond the whiskers are marked with 
“*” signs. In Fig. 3 the AM peak is between 
07:00-11:00, Mid-day is 11:00-15:00, and 
the PM peak is associated with 15:00-19:00. 
It is demonstrated that the delays in the 
AM and PM peaks are higher than Mid-
day due to the increased traffic during the 
peaks. Moreover, considering boxplot height 
differences between interquartile ranges, 
the travel time variabilities in the AM and 
PM peaks are more than the variability of 
Mid-day. It can be interpreted as travel time 
reliability that is higher in less congested 
paths. Due to the lower congestion level 
of Mid-day traffic, travel time reliability is 
greater in this period, allowing the commuter 
to stick to their schedule more easily. 
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Fig. 2.
Arterial Road Case Study in Fort Lauderdale, and Average Experienced Travel Time in Each Segment

3.3. Causes of Congestion

The method of this study attempts to 
attribute delay as the measure of congestion 
to different components. The considered 
factors in this study and their data sources 
are explained as below for both case studies.

3.3.1. Travel Demand

Travel demand is the number of desired trips 
over a given road segment, and represents a 
major contributor to congestion. Road traffic 
volume is a widely-used indicator of travel 
demand. Actual weekday traffic demand 
was available from 5 MVDS mid-block 
traffic count detectors on each segment. In 
this study, vehicle miles traveled (VMT) 
was considered as a proxy of demand. 
Vehicle Miles Traveled (VMT) is one of 
the most common measures in estimating 
travel demand in the United States and has 
historically been used to determine the need 
for new infrastructure (Soltani-Sobh et al., 

2016). For a given time period, VMT was 
estimated based on traffic volume counts 
and segment lengths. VMT was used to 
represent the effect of both traffic volume 
and traveling distance. Fig. 4 presents the 
hourly variation of travel demand collected 
from MVDS collectors. From the patterns of 
delay and travel demand, it can be extracted 
that the travel demand and delay are strongly 
correlated.

3.3.2. Signal Existence

The most important difference between 
a r ter ia l s a nd f reeway s i s s ig na l ized 
intersections. Control delay is defined 
as delay caused by the stops at signalized 
intersections. Control delay can be measured 
by comparison with uncontrolled conditions. 
It is the difference between the travel time 
that would have occurred in the absence 
of the intersection control, and the travel 
time that results because of the presence 
of the intersection control. In this study, 
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delay due to traffic signals is quantified by 
comparing actual travel times during very 
low traffic demand (e.g. nighttime) with free-
flow travel times. This definition is based on 
the fact that in night time when there is no 
non-recurrent factor and the traffic volume 
is low, the additional travel time over free 
f low travel time is contributed by signals at 
intersections. In this study, control delay 
is decomposed into signal existence and 
suboptimal signal timing. After suboptimal 
signal timing delay estimation, delay due 
to the signal existence can be estimated 
as control delay minus suboptimal signal 
timing delay.

3.3.3. Suboptimal Signal Timing

In this study, suboptimal signal timing 
was considered part of control delay. It 
demonstrates how much of the experienced 
delay in arterial traffic is contributed by not 
updated signal timing. The suboptimal signal 
timing variable is defined as the difference 
in intersection delay between existing 
(i.e. current) and optimized signal timing 
plans. The “current” state was introduced 
as the effectiveness of existing signal timing 
plans to serve current traffic demands. The 
“optimal” state represented effectiveness 
of updated signal timing plans in serving 
current traffic demands. This difference 
could be interpreted as a benefit of updating 
signal timing plans to better accommodate 
recent evolutions in traffic demand. It was 
expected that optimized signal timing plans 
would produce better performance (lower 
delay). 

The Broward County Traffic Engineering 
Department conducted the most recent 

retiming of signal timing plans in 2011 by 
developing several Synchro models. After 
this retiming effort, there were no further 
volume or timing adjustments to the Synchro 
files, but timing plans were fine-tuned in 
the field. In order to find out the delay of 
current and optimal signal timing plans, 
it was necessary to obtain current turning 
movement counts. Due to the availability of 
old traffic counts, old arterial traffic f low, 
and current arterial traffic flow from MVDS 
detectors, the current turning movement 
counts were estimated by growing the old 
turning movement counts by the growth 
factor of arterial traffic f low.  

These updated turning movement counts 
were inserted into the appropriate Synchro 
file. These Synchro files were created for 
each time-of-day (TOD) in all weekdays 
over the study period. Each time of day 
period included two associated Synchro 
files, namely “current” and “optimized”. In 
the current scenario, the turning movement 
counts and signal timing plans are current, 
while in optimized scenario the signal timing 
plans are optimized based on current turning 
movement counts.

Optimization itself included cycle length, 
split, and offset optimization of signal timing 
settings. The signal timing optimization 
applied in this study considers two main 
approaches used in arterial road which 
carry considerably larger amounts of traffic 
compares to side streets volumes. The 
relative difference was the measure of signal 
timing effectiveness, which represented 
a quantifiable change in delay per each 
direction so no preferential treatment would 
be given to any single one. 
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(a)                                                                      (b)

Fig. 3.
Hourly Variations of (a) Delay, (b) VMT over 24-hours

In each direction, performance of signal 
timing plans was assessed by quantifying 
the approach delay of intersections in each 
segment. The number of intersections 
in each segment is different. The signal 
performances also vary over time due to the 
variations in traffic volume. That means the 
signal performance are estimated for each 
times of day (AM, Mid-day, and PM) every 
day within period of study. The difference in 
delay resulted from Synchro was used as the 
measure of signal timing plan performance 
Eq.(3):

 (3)

where: SST(i,t): Measure of Suboptimal 
Signal Timing of intersection i at time 
interval t, CSDn(i,t): Intersection (n) signal 
delay at segment i at time period t (current 
signal plan), OSDn(i,t): Intersection (n) 
signal delay at segment i at time period t 
(optimum signal plan).

3.3.4. Work Zones and Incidents

Event logs provide information related to 
work zones and traffic accident. An event 
log retrieved from the Broward County 
Transportation Management Center (TMC) 
provided information per type of event, 
start time (time it was logged), location (if 
it spread over several segments or impacted 
only one), number of lane closures, and end 
time (when the event was cleared). The 
traffic incident and work zone variables are 
both binary. 

They were assigned a value of ‘1’ if an event 
took place during a given segment and 
15-min time frame. Using event duration 
instead of the binary treatment showed no 
advantages. The numbers of blocked lanes 
were not considered in this study, as all work 
zones and traffic incident events experienced 
single-lane closures and the model cannot 
recognize any different between various 
events in perspective of number of blocked 
lanes.
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3.3.5. Weather

The value of precipitation (in inches) was 
used as the measure of adverse weather. A 
web application/software was used to provide 
relevant precipitation data during the studied 
time frame. Depending on the actual zip code 
information, specific area limits along the 
entire corridor were determined. More than 
one zip code signified potentially different 
weather conditions at different areas during 
the same time period.

3.3.6. Number of Access Points

In addition to signalized intersections, 
driveways, openings in the right-hand side of 
roadway, and median openings are expected 
to influence traffic f low. A large number of 
access points can increase potential conflicts. 
Fewer access points spaced farther apart 
allow for more orderly merging of traffic, 
and lesser delay. Access points do not have 
any information about demand and they are 
just indicating disturbances on main traffic. 

4. Regression Based Decomposition 
Model

There have been extensive bodies of 
researches on appl icat ion of var ious 
mathematical, statistical, and econometric 
models in science and engineering (e.g. 
Asgari et al., 2015; Ahmadi and Merkley, 
2009; Baratian-Ghorghi and Zhou, 2015). 
A linear regression model was developed to 
decompose the observed delay into various 
factors. The linear model was chosen based on 
the assumption that each of the explanatory 
variables contributes linearly to the delay. 
(Chow et al., 2014) and (Kwon et al., 2006) 
suggest linear regression decomposes delay 
in urban area and freeway. A more complex 
relationship could exist between variables, 

but it is not considered in this study to keep 
the number of model parameters small, (e.g. 
adverse weather and number of incident). 
However, if enough data is available and the 
interaction is strong enough, such interaction 
terms could be considered. For our case 
study data in Fort Lauderdale, the weather 
coefficient correlation with incidents is 
only 0.049, which is negligible. The linear 
regression model in which delay observed 
at segment i, and time interval t, D(i,t) was 
defined as follows, Eq. (4), Eq.(5):

 (4)

 (5)

where: β0: value of intercept of the regression 
model, β: vector of the model parameters 
for the associated explanatory variables, 
VMT(i,t): vehicle miles traveled (volume 
× segment length) at segment i and time 
inter val t,  Signal(i ,t): signal ex istence 
measure at segment i and time interval t, 
SST(i,t) : suboptimal signal timing measure 
at segment i and time interval t, Weather(i,t) 
: precipitation measured at segment i and 
time interval t, WZ(i,t) : 0-1 indicator equal 
to 1 for an active work zone at segment i and 
time interval t, TI(i,t) : 0-1 indicator equal to 
1 for a traffic incident at segment i and time 
interval t, A(i) : the number of access points 
along segment I, ϵ(i,t) : error term following 
the normal distribution with a mean of zero, 
and a finite variance.

Three separate linear regression models 
for AM peak, Mid-day peak, and PM peak 
were developed. In order to compute model 
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coefficients, the model was fitted to data 
via the linear least-squares method. One 
statistical specification used in the model 
estimation procedure is transforming 
dependent v a r iable d at a .  Nor m a l ly 
distributed of residuals is a pre-requisite 
for linear regression analysis. In this study, 
the residuals of dependent variable (delay) 
were of ten not normal ly distr ibuted. 
However, an appropriate transformation was 
applied to yield data set residuals following 
approximately a normal distribution. The 

applied data transformation was  
(i.e., delay was transformed to delay0.5). In 
order to test data normality of residuals, 
the P-P plot of regression standardized 
residual was used. The P-P plot depicts 
observed cumulative probability values 
versus expected normal values of a given 
variable. P-P plots (before and after the delay 
transformation) are presented in Fig. 5. The 
criterion for normal distribution of residuals 
is the degree to which the plot coincides with 
reference line.

    (a)                                                    (b)
Fig. 5.
P-P Plot, (a) Original Delay, (b) After Transformation

4.1. Regression Results

It was mentioned that model parameters were 
estimated using the least-squares method. 
Results of regression over more than 30000 
data points related to various 15-minute time 
intervals and road segments are summarized 
in Table 1. As noted, the dependent variable 
was Delay0.5, thus estimation of pie charts 
and interpretation of results are based on 
transformed case. Applying the square-root 
function can be justified based on the facts 
that delay is known to grow non-linearly 
with increasing traffic intensity, generally 

with a power of 2. The validity of the fitted 
model was tested using the F-statistic with 
practically zero p-value for all four models. 
The linear regression model successfully 
explains the delay variation. The last 
column of results shows adjusted R2 values, 
which measure how well the regression line 
approximates real data for each scenario. 
Coefficients are estimated values of  
(intercept) and  (coefficients of different 
factors). The t-value and p-value present 
the model fit in prospective of variable 
significance, and indicate whether or not 
model parameters are significantly different 
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from zero. The t-value is estimated as the 
ratio of the parameter’s coefficient to the 
associated standard error. The p-value 
confirms the probability that the true value 
of that parameter is different from zero.

From Table 1, the following are observed:

• The R-square is more than 60% for all 
the scenarios, and shows more than 60% 
of delay variation is due to the variation 
of the selected contributing factors. 
Based on dependency of delay to travel 
time, it can also be concluded that more 
than 60% of travel time variability can 
be defined by these factors variation. 

• Estimated coefficients demonstrate that 
all the explanatory variables have proper 
sign, since positive sign indicates that 
the factors are contributing to the delay. 
Note that variables with p-value >0.05 
were treated insignificantly and removed 
from the model regardless of sign.

• Intercept, Demand, Signal existence, 
Work zone, and Access points all are 
significant variables for the observed 
delay in all scenarios. These factors are 
associated with a p-value <0.001.

• F r o m  t h e  r e c u r r e n t  v a r i a b l e s , 
Subopt i ma l s ig na l t i m i ng i s not 
significant in PM peak scenarios. The 
insignificant suboptimal signal timing 
demonstrates the retiming the signals do 
not have effect on mitigating the delay 
in PM peak period.

• The number of access points is a delay-
increasing factor. Because the data set 
is a combination of various segments 
with different numbers of access points, 
the results imply that segments having 
more access points induce more delay. 
The effect of access points on delay in 
the Mid-day scenario is higher than 
the other scenarios, likely because the 
frequency of commutes during the AM 
and PM periods compared with Mid-day.

Table 1
Congestion Causal Regression Model Results

Scenario Factor Coefficient Std. Error t-Value p-Value Adj R2

Intercept 0.346 0.047 7.355 0.00
VMT 0.014 0.00 87.548 0.00
Signal Existence 0.105 .003 38.61 0.00
Suboptimal Signal Timing 0.041 0.001 35.19 0.00

AM peak Weather 2.014 0.473 4.256 0.00 0.655
Work Zone - - - -
Traffic Incident 1.656 0.34 4.865 0.00
Number of  Access Points 0.141 0.008 18.45 0.00
Intercept 0.385 0.03 12.32 0.00
VMT 0.011 0.00 87.28 0.00
Signal Existence 0.088 0.002 38.07 0.00
Suboptimal Signal Timing 0.033 0.001 26.04 0.00

Mid-day Weather 7.7 0.535 14.41 0.00 0.78
Work Zone 0.841 0.08 10.68 0.00
Traffic Incident 2.09 0.35 5.96 0.00
Number of  Access Points 0.198 0.007 30.25 0.00
Intercept 1.313 0.048 27.4 0.00
VMT 0.014 0.00 70.83 0.00
Signal Existence 0.93 0.002 39.6 0.00
Suboptimal Signal Timing - - - -

PM peak Weather 1.086 0.316 3.44 0.00 0.69
Work Zone 1.412 0.273 5.18 0.00
Traffic Incident - - - -
Number of  Access Points 0.085 0.008 11.12 0.00
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5. Congestion Pie Development

Based on data availability at various segments, delay is constituted in this study by seven 
components, Eq. (6):

(6)

In all pie charts, portion of each contributing 
factor is due to magnitude of effects and 
frequency of factor. The delay components 
in pie charts are affected by the coefficient 
estimation (magnitude) and the average 
value of variables (frequency). Given the 

estimated coefficient  from regression 
model and average value of different variables 
over all sample point data (all segments i and 
all time intervals t), the components of delay 
can be estimated for the entire corridor over 
study period as the following Eqs. (7-14):

average delay caused by demand (7)

average delay caused by signal existence (8)

average delay caused by suboptimal signal timing (9)

average delay caused by weather (10)

average delay caused by work zones (11)

average delay caused by traffic incidents (12)

average delay caused by access points (13)

(14)

Table 2 presents the estimates of the delay 
components using the method presented 
in equation (7-14). Note that the model 
coefficient is regressed on square-root 
of delay; therefore, the portion of each 
contributing factor (percentage) is based 
on regressed square-root of delay.

These pie charts investigate how much 
each of these factors contributes to average 
ex per ienced commuting delay. A s an 
example, it can be interpreted that based on 
the collected data on arterial case study, in 
AM period, 54.35% of the average delay over 
period of study is caused by VMT, 15.77% 

is due to signal existence, 13.79% is based 
on suboptimal signal timing, etc. 

The presented pie charts in Fig. 6 imply 
that most arterial congestion regardless of 
scenario is caused by travel demands. One-
half of the delay is due to the travel demand, 
which means delay can be considerably 
reduced by demand management and 
modifying trip patterns.

When considering control delay, signals 
contributes 16%, 18%, and 14% of delay in 
the AM, Mid-day, and PM peak respectively. 
Suboptimal signal timing is another part of 
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control delay. Given that signal timing plans 
change between time periods, the suboptimal 
signal timing might have different impacts 
in the different time periods. Experienced 
delays caused by suboptimal signal timing 
were 14% and 8% in the AM and Mid-day 
scenarios, respectively. This demonstrates 
that current signal timing plans, especially 
in Mid-day, is not optimally matched to 
demand. Suboptimal signal timing displayed 
no contribution to PM peak delay.

All of the pie charts show that a portion of 
delay is not easily explained by any variables. 
The impacts of those variables are denoted 
as “Other” in the pie charts. While there is 
no clear indication of what constitutes this 
category, it is possible that factors such as 
road geometry, transit operations, school 
zones, on-street parking, driver behavior, 
and imprecision of travel time measurements 
are contributing to the unexplained part of 

congestion. To illustrate this speculation, 
it is widely known that Bluetooth travel-
time-measurement devices error on the 
side of reporting higher travel times due 
to capturing more slow-moving vehicles. 
Therefore these devices sometimes report 
not only higher travel times, but also more 
delays, than true average values in the field.

6 .  N o r m a l i z e d  C o n g e s t i o n  P i e 
Development

Based on the results of developed models in 
Table 1, almost all of the factors affect delay 
significantly. This means their variations 
statistically affect delay variations, and if 
any of these factors occurs, delay is changed 
significantly. However, the contributions 
of these factors to average delay are not 
considerable. It is because of the fact that 
frequencies of these events (over time at 
various segments) are relatively small.

Table 2
Delay Contributions from Various Causes
Scenario Factor Average 

value
Maximum 
value Coefficient Delay0.5  

Contribution
Average 
Delay (%)

Other (Intercept) NA NA 0.346 0.346 5.87
Demand 228.9 772.56 0.014 3.2 54.35
Signal Existence 8.85 44.28 0.105 0.93 15.77
Suboptimal Signal Timing 19.8 147.8 0.041 0.81 13.79

AM peak Weather 0.008 0.46 2.014 0.016 0.28
Work Zone - - - - -
Traffic Incident 0.0044 1 1.656 0.0074 0.13
Number of  Access Points 4.1 13 0.141 0.58 9.81
Other (Intercept) NA NA 0.385 0.385 7.65
Demand 222. 93 679.76 0.011 2.45 48.7
Signal Existence 10.47 44.28 0.088 0.92 18.3
Suboptimal Signal Timing 11.97 97.1 0.033 0.39 7.84

Mid-day Weather 0.0046 0.36 7.7 0.035 0.7
Work Zone 0.037 1 0.841 0.031 0.62
Traffic Incident 0.0019 1 2.09 0.004 0.08
Number of  Access Points 4.1 13 0.198 0.81 16.12
Other (Intercept) NA NA 1.313 1.325 21.28
Demand 264 661 0.014 3.52 56.52
Signal Existence 10.33 44.28 0.93 0.88 14.18
Suboptimal Signal Timing - - - - -

PM peak Weather 0.009 1.18 1.086 0.01 0.17
Work Zone 0.007 1 1.412 0.0098 0.16
Traffic Incident - - - -
Number of  Access Points 4.1 13 0.085 0.48 7.69
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(a)                                                                               (b) 

     
(c)

Fig. 6.
Congestion Pie Charts (a) AM, (b) Mid-Day, and (c) PM

Fig. 6 indicates average contribution of these 
causes to delay, although it is not clear how 
average experienced delay will change due 
to variation of these factors. In order to 
demonstrate the relative effect of various 
factors on delay, a set of normalized pie 
charts were developed by considering each 
factor’s maximum value instead of using the 
average value. As presented in Fig. 7, the 
normalized pie charts disregard the effect 
of factors’ frequency, and demonstrate 
the magnitude of various factors’ effects 
on delay, and the changeability of average 
delay due to variation of the factors. For 
example; incident occurrence in the AM peak 

increases the delay by 6.3% while increasing 
the rain by 100% induced 3.5% more delay. 
Based on these pie charts:

• Changing travel pattern to shift the AM 
and PM peak trips to other times of day is 
an effective strategy to decrease the delay.

• Controlling the access point to the 
a r ter ia l road ca n decrease delay 
considerably in Mid-day peak (12.55%).

• Retiming intersections’ signals can be 
more effective in AM peak by reducing 
23.05% of average experienced delay.

• Incident occurrence, induce more delay 
on Mid-day peak than AM peak.
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(a)                                                                                        (b)

(c)
Fig. 7.
Normalized Congestion Pie Charts (a) AM, (b) Mid-Day, and (c) PM

7. Conclusions

The mitigation of traffic congestion can be 
facilitated by understanding the nature and 
causes of congestion. This study used a linear 
regression model to quantify individual 
congestion causes on arterial corridors. 
The objective of this study was to create 
congestion pie charts which demonstrate a 
proportion of delay components on arterial 
corridor. As a practical application, i f 
agencies know congestion causes, they can 
strategize in order to mitigate congestion and 
the likely impact of such measures.

Mainly based on the availability (nature, 
access, coverage, etc.) of traffic data, a 
portion of Broward Boulevard in Fort 
Lauderdale, Florida was selected for an 
arterial road case study. The proposed 
methodology should be applicable to arterial 

roads elsewhere with supply of relevant data. 
Average experienced delay was modeled as a 
function of travel demand, signal existence, 
suboptimal signal timing, number of access 
points, adverse weather, work zones, and 
traffic incidents. Suboptimal signal timing 
was def ined as the intersection delay 
difference under existing and optimized 
signal timing plans. The optimum signal plan 
was designed by Synchro for 17 intersections, 
using the latest traffic volumes.

The model results and pie charts demonstrate 
that a considerable part of arterial congestion 
can be attributed to travel demands and 
signal existence. Non-recurrent factors such 
as adverse weather, work zones, and traffic 
incidents were also significant factors in the 
regression model, but their frequencies were 
negligible. These non-recurrent factors are 
effective if they happen, but their frequencies 
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are too low to be presented as major delay 
factors in congestion pie charts over a 
longer period of time. As an example of pie 
charts interpretation for this case study 
over 4 months, in AM peak around 54% of 
average delay is due to the traffic demand, 
16% is due to existence of signals, 14% is 
due to suboptimal signal timing, 10% is 
due to number of access points (too many 
ins and outs disturb the mainline traffic), 
1% is due to adverse weather, and 5% is due 
to unknown factors (pedestrians, public 
transit, etc.).

Recurrent factors such as high demand, signal 
existence, suboptimal signal timings, and 
access point conflicts can produce corridor-
wide congestion. Thus, to mitigate arterial 
congestion, transportation management 
agencies can prioritize their strategies to 
ref lect proportional importance of the 
causal congestions factors. Future research 
could include the use of more advanced 
statistical techniques such as panel data 
regression in order to take spatiotemporal 
details into account. In addition, signalized 
arterial corridors should be modeled through 
microscopic simulation software, to further 
investigate congestion causes under different 
scenarios.
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