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Abstract: This paper deals with the vehicle routing problem with time windows (VRPTW). 
The VRPTW routes a set of vehicles to service customers having two-sided time windows, 
i.e. earliest and latest start of service times. The demand requests are served by capacitated 
vehicles with limited travel times to return to the depot. The purpose of this paper is to 
develop a hybrid algorithm that uses the modified push forward insertion heuristic (MPFIH), 
a λ-interchange local search descent method (λ-LSD) and a genetic algorithm to solve the 
VRPTW with two objectives. The first objective aims to determine the minimum number of 
vehicles required and the second is to find the solution that minimizes the total travel time. 
A set of well-known benchmark problems are used to compare the quality of solutions. The 
results show that the proposed algorithm provides effective solutions compared with best 
found solutions and better than another heuristic used for comparison.
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1. Introduction

The vehicle routing problem (VRP) belongs 
to the class of NP-hard combinatorial 
problems which require a substantial amount 
of time to determine optimal solutions for 
large problems. The fundamental objectives 
are to determine the minimum number 
of vehicles, the minimal travel time or 
the minimal costs of the travelled routes. 
However, in real world applications, the 
VRP is extended by constraints such as 
vehicle capacity or time interval in which 

each customer should be visited. Such a 
VRP is called the capacitated vehicle routing 
problem with time windows (VRPTW). 
This paper proposes an algorithm with two 
objectives of minimizing the number of 
vehicles and minimizing the total travel time 
for the VRPTW. First, the modified push 
forward insertion heuristic (MPFIH) is used 
to generate an initial solution and then the 
solution is improved by a λ-interchange local 
search descent method (λ-LSD) combined 
with a genetic algorithm. The constraints 
of the problem are to serve all customers 
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within an earliest and latest start of service 
time of the customer without exceeding the 
route time of the vehicle and exceeding the 
vehicle capacity. The route time of a vehicle 
is defined as the sum of the waiting times, 
the service times and the travel times. A 
vehicle that reaches a customer before the 
earliest start of service time, after the latest 
start of service time and after the maximum 
route time incurs waiting time, tardiness 
time and overtime, respectively. Finally, the 
total customer demand in each route cannot 
exceed the capacity of the vehicle.

The rest of this paper is organized as follows. 
Section 2 reviews relevant VRPTWs and 
algorithms to solve them. Section 3 presents 
the methodology to solve the problem under 
study. Section 4 presents and discusses the 
results. Finally, conclusions and future work 
opportunities are added in section 5.

2. Literature Review

The VRPTW is a well-known and complex 
combinatorial problem with considerable 
economic significance (Christofides, 1985). 
The VRPTW is more complex than the 
Travelling Salesman Problem (TSP) as it 
considers servicing customers with time 
windows using multiple vehicles. Savelsbergh 
(1985) has shown that finding a feasible 
solution to the Traveling Salesman Problem 
with time windows (TSPTW) is an NP-
complete problem (see also Braekers et 
al. (2014) for full truckload applications). 
Although, optimal solutions to the VRPTW 
can be obtained using exact methods, the 
computational t ime required to solve 
a VR PTW optimally is prohibitive for 
large problems (Cordeau et al., 2002). As 
a result, heuristic methods are often used 
to obtain optimal or near optimal solution 
in a reasonable amount of time. Heuristic 

approaches for the V R PT W use route 
construction, route improvement or methods 
that integrate both route construction and 
route improvement. Many researchers 
propose to use meta-heuristic algorithms 
for the VRPTW and other extensions of the 
VRP, called rich vehicle routing problems 
as introduced in Hartl et al. (2006). For 
example, Tarantilis et al. (2004) propose a 
metaheuristic for solving the heterogeneous 
fleet vehicle routing problem (HFFVRP). 
The Pickup and Delivery problem with time 
windows (PDPTW) has been considered 
by Mitrinovic-Minic and Laporte (2006). 
Recent ly, the problem in V R PT W is 
extended to the real-world business. The 
f leet size and mix vehicle routing problem 
with time windows (FSMVRPTW) is a 
specific problem of the classic vehicle routing 
problem. Solutions are proposed by Belfiore 
and Fávero (2007), Bräysy et al. (2008), 
Dell‘Amico et al. (2007), Dullaert et al. 
(2002) and Repoussis and Tarantilis (2010). 

In Solomon’s paper, the time-oriented nearest 
neighbor insertion heuristic has shown to be 
very successful. Berger and Barkaoui (2004) 
propose a parallel version of a hybrid genetic 
algorithm for VRPTW. This approach is 
based on the simultaneous evolution of two 
populations of solution focusing on separate 
objectives subject to temporal constraint 
relaxation. Bräysy and Gendreau (2005a, 
2005b) present a survey of the research on 
the VRPTW. Both traditional heuristic 
route construction methods and recent local 
search algorithms are examined in Part I. 
Part II gives an overview of meta-heuristic 
approaches for the VRPTW.

Algorithms to solve the multi-objective 
VRPTW have been introduced by Jozefowiez 
et al. (2008). Ombuki et al. (2006) present a 
genetic algorithm solution using the Pareto 



151

International Journal for Traffic and Transport Engineering, 2016, 6(2): 149 - 158

ranking technique. An advantage of this 
approach is that it is not necessary to derive 
weights for a weighted sum scoring formula. 
Tan et al. (2006) propose a hybrid multi-
objective evolutionary algorithm (HMOEA) 
with specialized genetic operators and 
variable length chromosome representation 
to accommodate the sequence-oriented 
optimization in VRPTW. The HMOEA 
optimizes a l l routing constraints and 
objectives simultaneously, which improves 
the routing solutions in many aspects, such 
as lower routing cost, wider scattering area 
and better convergence trace. Ghoseiri 
and Ghannadpour (2010) develop an 
evolutionary algorithm for the VRPTW by 
incorporating various heuristics for local 
exploitation in the evolutionary search and 
the concept of Pareto’s optimality. Garcia-
Najera and Bullinaria (2011) propose an 
improved multi-objective evolutionary 
algorithm for the VR PTW by adding a 
similarity measure between solutions. Also 
other conf licting objectives may be taken 
into account in the VRPTW. All approaches 
in the literature are quite effective, as they 
provide solutions competitive with well-
k now n benchmark data of Solomon’s 
VRPTW instances (2008).

3. Methodology: Notation and Algorithm 
Description

In this section the notation of the parameters 
of the model as wel l as the decision 
variables is explained. The model uses a 
fixed number of vehicles to serve a fixed 
number of customers from a single depot. 
Each customer has a known demand. The 
fleet of vehicles is homogeneous, i.e. they all 
have the same capacity. Each customer has a 
delivery time window, defined by an earliest 
and latest arrival time. The depot also has its 
time window. Time windows are of the soft 

type, both for customers as for the depot. 
Late arrivals lead to a penalty per time unit 
of tardiness. Late arrival at the depot leads 
to an overtime cost. 

3.1. Notation

Mathematical notations
K: number of vehicles, with index k, k = 1..K
N: number of customers (including the 
depot), with index i, i = 1..N
Ci: customer i, with index i = 2..N
C1: depot

Problem parameters
di: demand of customer i, i=2..N 
q: capacity of each vehicle
t ij: travel t ime bet ween customer i to 
customer j where i, j = 1, ..., N, i ≠ j and i = 1 
or j = 1 refers to the depot
ei: earliest arrival time at customer i
li: latest arrival time at customer i
bi: service time at customer i
M: maximum travel time of each vehicle
α: penalty weight factor for the waiting time
γ: penalty weight factor for the tardiness time
η: penalty weight factor for the overtime
KLB: lower bound on the number of vehicles 

to be used, where 

Variables
Dk: total demand for vehicle k
Ai: arrival time at customer i
wij: waiting time after departure from 
customer i and before servicing customer 
j, defined as wij = max[ej - (Ai + tij), 0], i, j = 
2..N and i ≠ j
rik: travel time of vehicle k until customer i
Wk: total waiting time for vehicle k, where 
k = 1..K
Bk: total service time for vehicle k, where 
k = 1..K
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Ok: total overtime for vehicle k, where k 
= 1..K, i.e. the time that a route served by 
vehicle k exceeds M 
Lk: total tardiness for vehicle k, where k = 1..K
Tk: total travel time for vehicle k, where k 
= 1..K
Totk: total journey time for vehicle k, defined by
Totk = Tk + Wk + Bk where k = 1..K

Decision variables
xijk: indicator if the customers i and j follow 
each other in a route served by vehicle k (xijk 
= 1) or not (xijk = 0) , where i ≠ j.
 
Routes
A solution to the problem is represented by 
a set of routes S = {R1, R2, …, RK} 
Rk: route of vehicle k, i.e. a sequence of 
customers served by vehicle k, where k = 1..K

Objective function
The objective function of the VRPTW is 
made up as a single-objective cost function. 
The cost function for a vehicle k consists of 
four parts: the travel cost, the waiting cost, 
the tardiness cost and the overtime cost. 
The cost is summed over all vehicles active 
in the operation:

 (1)

The objective function can be written in 
terms of the decision variables xijk as:

where

3.2. Algorithm

The aim is to route vehicles such that the 
total travel time of all vehicles and their 

penalties including waiting, tardiness and 
overtime, are minimized. Typically, the 
first priority aims to find the minimum 
number of vehicles required and the second 
priority aims to search for the solution that 
minimizes the total travel time of all vehicles 
(expressed as a cost) and their cost penalties 
with respect to waiting time, tardiness and 
overtime.

In this section, a two-phase algorithm for 
solving the VRPSTW is developed. The 
algorithm consists of two phases: a route 
construction phase and a route improvement 
phase. In the first phase, a modified push-
forward insertion heuristic (MPFIH) is 
applied. The MPFIH developed by Manisri 
et al. (2009) is a heuristic method for 
inserting a customer into a route based on 
the push-forward insertion method. It is an 
efficient method for computing the insertion 
of a new customer into the route. The initial 
number of routes in this method is defined as 
the minimum number of vehicles necessary 
to satisfy total customer demand. Facing the 
fact that in this initial number of routes no 
time windows are taken into consideration, 
considerable penalties appear in the second, 
third and fourth terms of the objective 
function. This most probably causes an 
effect of significant improvement in the 
objective functions in the first generations. 
The feasibility of inserting a set of customers 
into route Rk is checked by inserting the 
customer between all edges in the current 
route and selecting the edge that satisfies the 
vehicle capacity. The MPFIH algorithm is 
documented below.

Step 1: Construct two lists of customer 
nodes. The first list sorts the customer 
nodes in ascending order of ei. The second 
list sorts customer nodes in descending order 
of li where ei is the earliest arrival time of 
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customer i that is not allowed when creating 
the route and also li is the latest arrival time 
in the same meaning.

Step 2: Construct two lists of customer node 
size KLB. The first list contains KLB elements 
with the lowest values of ei. Remove the 
selected customer nodes from both sets, 
which are created in Step 1. The second list 
is made up of the remaining customer nodes 
in descending order of li.

Step 3: Construct the matrix, Rk size KLB * 2 
by the first column is Ci which the first KLB 
minimum, ei and the second column is the 
first KLB maximum, li.

Step 4: Check the feasible routes, each row 
of matrix, Rk that satisfy the constraints. If 
all rows satisfy the constraints, the initial 
matrix, Rk is setting by size KLB * 2.

Step 5: Remove the customer nodes from 
2 sets in Step 1 that have been selected to 
matrix, Rk.

Step 6: Construct insertion matrix size KLB 
* 1 by select the set of Ci which the next KLB 
minimum, ei.

Step 7: Insert the matrix of Ci between the 
column first and second column of Ci then 
repeat Step 4 to Step 6 until the 2 sets of 
customer nodes in Step 1 are empty and all of 
Ci has been inserted to routes or matrix, Rk then 
the algorithm terminates. If not, go to Step 8.

Step 8: Select the remainder of each customer 
node, Ci which the next minimum, ei and 
then insert a node to the route that has the 
remainder capacity.

Step 9: Remove the customer nodes that have 
been selected and then repeat Step 8 to Step 9.

Step 10: If all of Ci has been inserted to routes 
or matrix, Rk then the algorithm terminates, 
else go to Step 11.

Step 11: Construct a new route or row of 
matrix, Rk+i, where i = 1,...,n and then repeat 
Step 9 to Step 11 until the 2 sets of customer 
nodes in Step 1 are empty then the algorithm 
terminates.

In the second phase, the route improvement 
algorithm applies local search and a genetic 
algorithm, based on the concept of iteratively 
improving the solution to a problem by 
exploring neighboring solutions. To design 
a λ-interchange local search descent method 
(λ-LSD), one typically needs to specify the 
following choices: how an initial feasible 
solution is generated; which move-generation 
mechanism to use; which acceptance 
criterion and the stopping criterion to use 
(Bräysy and Gendreau, 2005a). The λ-LSD 
searches the set of neighbors generated by 
the LSD for a given integer  equal to 1 and 2. 
The move generation mechanism creates the 
neighboring solutions by the move operators 
indicated as (0, 1), (1, 0), (1, 1), (0, 2), (2, 
0), (1, 2), (2, 1) and (2, 2). The operator (0, 
1) on routes (Rp, Rq) indicates a shift of one 
customer from route q to route p (Fig. 1). 
The operators (0, 1), (1, 0), (2, 0) and (0, 
2) indicate a shift of one or two customers 
between two routes. The operators (1, 1), (1, 
2), (2, 1) and (2, 2) indicate an exchange of 
one or two customers between two routes 
(Fig. 2) (Osman, 1993).

It is a sequential search which selects all 
possible combinations of different pairs of 
routes. The first generation mechanism has 
been introduced by Osman and Christofides 
(1994). If the neighboring solution is better, 
it replaces the current solution and the 
search continues. Two strategies exist to 
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select a neighbor when implementing an 
improvement method: the best-improve 
strategy investigates the whole neighborhood 

and chooses the best neighbor; the first-
improve (FI) selects the first neighbor that 
satisfies the pre-defined acceptance criterion.

Fig. 1.
The Move Operator (0, 1)

Fig. 2.
The Move Operator (1, 2)

Then a genetic algorithm is applied to 
prevent the local search from falling into a 

local optimum. The GA-based algorithm for 
the VRPTW can be summarized as follows:
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Construct the travel time matrix using Euclidean distances;
Set the penalty weight parameters which are α, γ and η;
Set the parameters for the λ-LSD and GA which are the maximum number of 
iterations, the initial population size, the crossover rate (P

c
) and the 

mutation rate (P
m
); 

Generate an initial population using MFPIH; 
Evaluate the fitness function of the initial population members;
Repeat: 
 Select parent chromosome using roulette wheel selection;
 Generate random numbers for the crossover and mutation operators
 If random number for crossover > P

c
 

then 
execute crossover 

 else 
  execute mutation;
 Evaluate fitness functions of offspring;
  Increase the number of offspring in the initial solution

Calculate the probabilities in choosing the chromosome.
Until the maximum number of iterations is reached

4. Results and Discussion

Typically a new algorithm is tested against 
well-known benchmarking problems with 
known characteristics. While several authors 
have published instances, the instances 
of V R P with time windows published 
by Solomon are the most widely used in 
experiments for comparison. The instances 
include information per customer including 
its location (expressed as a (x,y) coordinate), 
its demand, its time windows (expressed as 
an interval between an earliest and latest 
time of start of service), and a service 
duration. The instances are designated of 
the C-type, the R-type, or the RC-type. 
The original 56 Vehicle Routing Problems 
with Time Windows (VRPTW) instances 
designed by Solomon in 1983 contain 100 
customers, but later versions are available 
with 25 and 50 customers. Our proposed 
algorithm is tested on Solomon’s VRPTW 
benchmarking problems including R1&R2, 
C1&C2 and RC1&RC2. The experiment 
runs on 56 VRPTW instances. All instances 
have 25, 50 or 100 customer nodes and a 

single depot node. The geographical data 
are randomly generated in problems sets 
R1 and R2, clustered in problem sets C1 
and C2, and a mix of random and clustered 
structures in problem sets RC1 and RC2. 
The problems R1 (C1, RC1) and R2 (C2, 
RC2) differ by the fact that the instances 
in R1 (C1, RC1) have a shorter scheduling 
horizon and allow only a few customers per 
route, while the instances in R2 (C2, RC2) 
have a longer scheduling horizon permitting 
many customers to be served in the same 
route. The solutions have been compared 
with the solutions from Manisri et al. (2009) 
as shown in Table 1. The comparison of 
the results are separated into two objective 
functions: the minimum number of vehicles 
and the minimum total travel times. NV and 
TT represent the number of vehicles and the 
total travel time (on average), respectively. 
Also BFS, HY, and GA represent the best 
found solution, the solution from Manisri 
et al. (2009), and the solution from the 
algorithm proposed in this paper. The 
column ‘All’ averages over the columns with 
25, 50 and 100 customers.
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Table 1
Comparison of Results for Various Types of Problems and Different Solution Methods

Problem Result
Number of Customers
25 50 100 All

R1

BFS
NV 4.92 7.75 11.92 8.20
TT 463.37 766.13 1209.83 813.11

HY
NV 4.83 8.33 14.58 9.25
TT 482.13 840.82 1391.43 904.79

GA
NV 3.75 6.17 12.50 7.47
TT 433.46 702.84 1326.92 821.07

R2

BFS
NV 2.73 4.11 2.73 3.19
TT 382.15 634.03 951.87 656.02

HY
NV 2.44 4.00 6.82 4.42
TT 487.19 816.19 1321.58 874.99

GA
NV 2.00 4.09 7.27 4.45
TT 470.54 702.60 1227.61 800.25

C1

BFS
NV 3 5.00 10.00 6.00
TT 190.56 361.69 828.33 460.19

HY
NV 3.33 5.78 12.78 7.30
TT 289.42 637.04 1755.68 894.05

GA
NV 3.33 5.89 17.33 8.85
TT 252.33 481.91 1563.79 766.01

C2

BFS
NV 2 2.75 3.00 2.58
TT 214.45 357.50 589.86 387.27

HY
NV 2 3.13 6.88 4.00
TT 279.29 595.30 1332.43 735.67

GA
NV 1.88 3.13 12.38 5.80
TT 279.88 520.31 1452.96 751.05

RC1

BFS
NV 3.25 6.50 11.50 7.08
TT 350.24 730.31 1384.11 821.55

HY
NV 3.75 8.25 14.75 8.92
TT 394.56 864.74 1584.88 948.06

GA
NV 3.25 6.75 13.50 7.83
TT 354.28 711.19 1595.80 887.09

RC2

BFS
NV 2.88 4.43 3.25 3.52
TT 314.49 585.24 1119.31 673.01

HY
NV 2.38 5 7.63 5.00
TT 440.70 942.59 1555.16 979.48

GA
NV 2.63 4.75 8.25 5.21
TT 432.14 739.89 1463.30 878.44

Table 1 illustrates the effectiveness of the 
results of the proposed algorithm, as it 
provides solutions competitive with best 
solutions and also provides better solutions 
than those obtained by Manisri et al. (2009). 
But there seem to be differences in the 

effectiveness of the algorithm. Compared 
to the Manisri et al. (2009) results, the 
algorithm seem to work better on the R1/
R2 sets and the RC1/RC2 sets, but shows no 
improvement or a small improvement in the 
clustered sets. Compared to the best known 
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solutions, the algorithm works mostly very 
good except for a few exceptions. The worst 
examples are found in the clustered sets C1/
C1 and RC2 with 100 customers.

5. Conclusion and Future Work

An algorithm to solve the bi-objective 
VR PTW has been developed using the 
concept of modified push forward insertion 
heuristic (MPFIH), a λ-interchange local 
search descent method (λ-LSD) and a genetic 
algorithm. The effectiveness of the proposed 
algorithm is evaluated through some of 
Solomon’s benchmark problem sets. The 
results show that the proposed algorithm, 
in general, provides effective solutions 
compared with best found solutions and 
better than some other heuristics.

For the future work, the cases with weak 
results need a closer investigation. Two 
questions are to be answered: (1) why do 
weaker results appear for the clustered sets? 
and (2) why do weaker results appear for the 
larger instances? To answer the first question, 
it might be useful to explore various local 
search strategies. No immediate advice can 
be formulated to answer the second question. 
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