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Abstract: An operational consistency model for real-time dynamic traffic assignment (DTA) 
applications seeks to correct the time-dependent path assignment within a rolling horizon 
scheme. This study extends an existing consistency framework to develop a hierarchy for 
the time-dependent path set based upon their relative importance to ensuring consistency. 
Using the analytic hierarchy process, the eigenvalue associated with a path is identified as 
the parameter which enables the rank ordering of paths. The ability to identify a subset of 
dominant paths relative to enhancing consistency enhances the computational viability of the 
consistency framework for real-time implementation and has significant practical implications. 
Additionally, it provides insights on the complex dynamics that are inherent to the operational 
consistency problem.
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1. Introduction 

The dynamic traffic assignment (DTA) 
problem entails the consideration of several 
aspects including the accuracy, effectiveness, 
stochasticity, computational tractability, 
traffic realism, user heterogeneity, and system 
characteristics (information availability, 
type, and dissemination sources). The 
deployment of DTA entails using sensor 
data to adjust the DTA model in real-time. 
The real-time issues can be classified into 
two groups in general: those pertain to the 
system-wide operations (system-related 
issues), and those relevant to the solution 
procedure and quality (solution-related 

issues). The system-related issues include the 
functional integration, operational execution 
and its time requirements, measurements 
and reliabilities of system components, 
tolerances, and control architecture. The 
DTA solution-related issues address various 
nuances of consistency, robustness, and 
stability of solutions arising from a number 
of stochastic factors. While the two types 
of issues are dependent upon each other, 
this study focuses on the solution-related 
issues under a set of mild system-related 
assumptions. 

Consistency refers to the degree of closeness 
between the predicted and observed traffic 
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network states over time. It is a solution-
related issue that can arise from unreliable 
origin-destination (O-D) demand estimation 
(Zhou and Mahmassani, 2005), simplified 
traffic flow dynamics (Zhang and Nie, 2005), 
inaccurate traffic f low model (Doan et al., 
1999), detector measurement errors (Peeta 
and Anastassopoulos, 2002), behavior-
related factors in route choice (Lotan and 
Koutsopoulos, 1993; Paz and Peeta, 2009), 
unpredictable incidents (Peeta and Zhou, 
2002) and incorrect assumption of system-
related parameters (Peeta and Yu, 2006). 
Without the correction of the above errors, 
the inconsistency would accumulate and 
propagate in the system making the network 
state estimation and prediction potentially 
unreliable. The inconsistency can also be 
viewed as the aggregate effect of random 
or unknown factors that introduce errors in 
the path assignment procedure (Peeta and 
Zhou, 2002). 

Inconsistency issues for DTA have been 
most ly invest igated in the context of 
specific contributing factors. For instance, 
studies (Antoniou et al., 2007; Balakrishna 
et al., 2007; Ben-Akiva et al., 2001; Zhou 
and Mahmassani, 2005) have sought to 
calibrate DTA models through optimization 
or statistical methods (He and Ran, 2007) 
to reduce the inconsistency by adjusting 
demand, supply, or demand and supply jointly 
(Huang et al., 2010; Omrani and Kattan, 
2012; Vaze et al., 2009). These studies 
view inconsistency arising from incorrect 
O-D demand and/or behavior model on 
the demand side, as well as incorrect traffic 
f low model on the supply side. Incorrect 
prediction of travelers’ route choice behavior 
is another factor that can contribute to the 
inconsistency. In this context, travelers’ 
en route behavioral response to real-time 
information can be difficult to predict. The 

en route decisions describe their behavior in 
response to a change in traffic conditions 
and the need to deviate from their pre-trip 
routes. Hybrid route choice models, which 
combine both pre-trip route choice and en-
route route choice, have been used to address 
this inconsistency (Pel et al., 2009; Qian and 
Zhang, 2013). These studies highlight that 
behavior is a key source of inconsistency due 
to the spatio-temporal interactions resulting 
from travelers’ route choice decisions under 
information provision. Hence, behavioral 
aspects need to be carefully considered in 
consistency-checking procedures to factor 
travelers’ learning processes and en route 
adjustment in predicting the time-dependent 
network states (Paz and Peeta, 2009; Peeta 
and Yu, 2005). 

Computational efficiency is another key 
challenge associated with consistency for 
real-time DTA. In a simulation-based DTA 
context, a brute force strategy to maintain 
system consistency is to re-simulate the 
net work tra f f ic condit ions using the 
posteriori variables consistent with the state 
variable. Such a method is computationally 
intensive and not suitable for real-time DTA 
implementation (Zhou and Mahmassani, 
2005). Kang (1999) developed a real-time 
long-term consistency updating module, 
which heuristically adjusts the demand 
level according to the discrepancy between 
simulated and observed link densities. 
Zhou and Mahmassani (2002) proposed a 
dynamic programming approach for real-
time freeway f low propagation adjustment. 
Later, they further proposed an O-D demand 
consistency-checking and updating model 
for real-time DTA operations using feedback 
control to regulate the demand input 
(Hawas, 2002; Zhou and Mahmassani, 
2005). Peeta and Bulusu (1999) proposed 
a mathematical programming approach 
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for ensuring consistency, which seeks to 
minimize deviations between real-time 
traffic measurements and predicted network 
states. All of these studies focus on real-
time operational implementation, which 
requires the development of tractable 
and computationally eff icient solution 
algorithms. 

To address the inconsistency issue for real-
time DTA, Peeta and Zhou (2002) developed 
a hybrid framework combining off line and 
real-time strategies to deal with two solution-
related issues: (i) factoring the randomness 
i n t he O-D dema nd a nd/or net work 
supply conditions, and (ii) enhancing the 
computational performance. The off line 
component uses historical O-D demand data 
to determine a robust initial solution, which is 
then updated dynamically in real-time based 
on unfolding O-D demand and incidents. 
The computationally intensive components 
are addressed off line to generate a robust 
initial solution that allows for efficient 
real-time updates, thereby enhancing the 
computational performance. Peeta and Yu 
(Peeta and Yu, 2004, 2005; Yu and Peeta, 
2011) proposed and numerically analyzed 
a model that combines quantitative and 
qualitative variables in a single framework 
to more robustly predict travelers’ en-route 
route choice behavior under information 
provision. Later, Peeta and Yu (2006) 
combined their route choice model for 
network loading and a consistency-seeking 
model that updates driver behavior class 
fractions in real-time, called a behavior based 
consistency-seeking model (BBCS). BBCS 
captures the heterogeneous driver class 
fractions in real-time using the observed link 
traffic counts (Peeta and Yu, 2006). Although 
BBCS improves the solution quality, the 
computational effort is still significant 
relative to real-time deployment needs. 

Peeta and Bulusu (1999) proposed a 
theoretical consistency-seeking model 
(CONS) to i mprove t he operat iona l 
consistency for real-time DTA with advanced 
traffic management and information systems. 
In this model, the inconsistency is measured 
by comparing predicted and observed link 
traffic counts, and is assumed to arise from 
a number of sources including inaccurate 
O-D demand, traffic incidents, inaccurate 
prediction of path choices for the unequipped 
user class (vehicles in this class are not 
equipped to receive real-time information), 
and inaccurate prediction of compliance for 
the equipped user class. The model is applied 
in a rolling horizon-based DTA approach 
(RH-DTA) (Peeta and Mahmassani, 1995) 
to improve the consistency by adjusting 
the path assignments. More specifically, 
the model first solves a deterministic DTA 
problem based on rolling-horizon technique 
to predict the traffic network performance, 
and then improves the consistency measured 
by the difference between the predicted 
network performance and the observed 
conditions unfolding in real-time. The 
consistency problem was then formulated 
as a constrained least squares model and 
solved using the generalized singular value 
decomposition (GSVD) method. 

In their CONS model, Peeta and Bulusu 
(1999) obser ved that a considerable 
amount of computational effort is needed 
to determine a set of paths that contribute 
little to the consistency. It provides the 
motivation for this study; to rank order the 
time-dependent paths and identify a subset of 
dominant paths that significantly contribute 
to the consistency. By manipulating only 
the subset of dominant paths in the CONS 
model, the problem size can be reduced 
w it hout comprom isi ng t he solut ion 
quality significantly. This can improve the 
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computational efficiency considerably, which 
is synergistic with the real-time deployment 
objective. 

I n t h i s  s t ud y,  we u se t he A n a ly t ic 
Hierarchy Process (AHP) to rank order 
the time-dependent paths in terms of their 
contribution to enhancing the consistency 
for real-time DTA deployment, by generating 
eigenvalues. Paths ranked high are grouped 
as the set of dominant paths. The rank 
ordering within the set of dominant paths 
signifies the importance of a path over the 
others in the consistency context. The 
inconsistency is corrected by manipulating 
only the set of dominant paths rather than 
all time-dependent paths. 

The remainder of the paper is organized 
as follows. In the next section, the concept 
of A HP is brief ly introduced, and the 
methodology to obtain priorities using 
eigenvectors of a pairwise comparison matrix 
is discussed. Section 3 applies AHP to the 
real-time consistency problem to obtain 
the path hierarchies. It also discusses the 
AHP-based path prioritization procedure 
and solution algorithm. Section 4 presents 
simulation experiments to demonstrate 
path prioritization in relation to real-time 
consistency. The final section summarizes 
the findings of this study and provides some 
concluding comments.

2. Analytical Hierarchy Process (AHP)

2.1. The Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) 
(Saaty, 1977; Saaty, 1980) is a technique 
widely applied in decision theory. It is 
leveraged in this study to identify a subset 
of dominant time-dependent paths (TDPs) 
that contr ibute to the inconsistenc y 

significantly, to the extent that considering 
the dominant subset of TDPs suffices to 
provide a similar degree of accuracy in the 
consistency context as when all paths are 
considered. From an operational perspective, 
this procedure suggests that manipulating 
the subset of dominant paths in the network 
at the current time can enhance the overall 
system performance in a CONS model. The 
resulting CONS model has a substantially 
reduced size that enables computational 
efficiency for real-time operational needs.

Saaty (1980) discusses aggregate decision-
mak ing using A HP, in which a set of 
alternatives is prioritized (or weighted) 
according to their importance. The AHP 
approach is as follows. First, in each level 
of a hierarchy with respect to an element of 
the next higher level, a pairwise comparison 
of n alternatives is constructed in an n x n 
square matrix. In the current context, the set 
of alternatives are the time-dependent paths 
at a specific time. Each matrix element (ith 
row and jth column) indicates the strength 
with which path i dominates another path 
j for a given criterion. Next, the weights of 
the elements in each level of a hierarchy 
are scaled with respect to an element of the 
next higher level. This paper adopts Saaty’s 
method (Saaty, 1977) to scale the weights of 
the TDPs at a specific time with respect to 
another TDP of the next higher level. This 
is discussed in detail in the next subsection. 

2.2. Determine Priorities: The Eigenvector 
Approach

A H P  c a n  m o d e l  d e c i s i o n - m a k i n g 
character ized by mult iple object ives 
(multiple factors/criteria that are important 
in decision-making) (Arrow, 1963; Mirkin, 
1979; Sen, 1970; Wang and Shen, 1989; 
Wendell, 1980).There are two primary 
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goals in an analytic hierarchy process: (i) 
determine the relative importance of each 
objective involved in the decision process, 
and (ii) ensure that the qualitative judgment 
regarding each alternative to fulfill a certain 
objective is properly quantified.

Saaty (1980) proposed the eigenvector 
method for AHP. Let P1, P2… Pn be the set of 
alternatives, which are the set of TDPs in our 
context. The relative importance (or weight) 
of alternative Pi compared to alternative Pj 
is denoted by pij (usually specified using a 
1-9 scale). The pairwise comparisons of 
alternatives are represented in a reciprocal 
matrix:

1 2

1 12 1

2 12 2

1 2
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1/ 1

1/ 1/ 1

n

n

n
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This matrix has positive entries and is 
called the reciprocal matrix as it satisfies 
the reciprocal property pji = 1/pij. 

The information conveyed by P can be 
synthesized by methods such as least squares 
and logarithmic least squares methods 
(Harker and Vargas, 1987). P is considered 
to be inconsistent when the reciprocal law 
is violated, that is, it does not satisfy the 
relation pij pjk = pik for every i, j, and k. In such 
a case, the eigenvector method is useful to 
handle the inconsistency. 

Let W be the column vector that denotes the 
relative weights (w1… wn) of the considered 
objective. There are n eigenvalues in the 
square matrix P. Since all diagonal elements 
in P are 1, the sum of all eigenvalues is n. If 
λiis the ith eigenvalue, then:

( )    i tr P sum of thediagonal elements nλ = ≡ =∑  (2)

where tr(P) represents trace of matrix P.

In a consistent matrix where the reciprocal 
law is strictly maintained for every i, j, and 
k, the largest eigenvalue is “n” and the other 
eigenvalues are zero. The relative weights in 
such a case can be obtained by solving the 
following Eq. (3):

P W = n W (3)

where W is the eigenvector corresponding 
to the eigenvalue n. But in most cases, 
the reciprocal matrices are not perfectly 
consistent. The degree of inconsistency is 
measured by the difference between the 
maximum eigenvalue λmax and n. The closer 
λmax is to n, the higher degree of consistency of 
P. When max is not significantly different from 
n, the relative weights W can be estimated 
as follows:

P W = λmax W (4)

where W is now the eigenvector with 
respect to λmax. Let wi be the ith weight in W

and . Then, the normalized weight

is . The normalized weight is unique,

and also satisfies . The lack of

consistency can be measured by a consistency 
index (CI) defined as . CI is 

compared with the average consistency index 
of randomly generated reciprocal matrices, 
called the random index (RI) (Saaty, 1980). 
The consistency ratio (CR) is obtained by 
dividing CI by RI. The lower the value of CR 
indicates the higher degree of consistency. 
Saaty (1980) suggests that the consistency 
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ratio should be lower than 0.10 for every 
comparison matrix to ensure an accurate 
estimation. The relative weights of the 
alternatives under each of the objectives can 
be determined following the aforementioned 
steps. Let u1k, u2k… umk be the relative weights 
of the m alternatives under the objective 

k. Let ; the normalized weights 

under the objective k are obtained as 
. The normalized weights are aggregated to 
determine the priorities of the alternatives. 
The aggregated weights V for the alternatives 
are determined as follows:

 

(5)

The alternative with the highest weight is 
then chosen as the most desirable alternative. 
The weights  are ranked in the descending 
order and ref lect the priorit ies of the 
alternatives.

3. Application of AHP to the Real-Time 
Consistency Problem

3.1. Overall Framework

This study extends Peeta and Bulusu’s CONS 
model (Peeta and Bulusu, 1999) using AHP 
to improve real-time DTA consistency. The 

developed model is labeled as AHP-based 
CONS (A-CONS). The AHP is used to 
rank order the TDPs using the eigenvector 
approach in terms of their significance to 
inconsistency. 

Fig. 1 il lustrates the A-CONS for real-
time DTA in a stage-based rolling horizon 
framework. The objective is to reduce the 
real-time inconsistency between the observed 
and predicted system states. As illustrated 
in Fig. 1, the AHP model is triggered if the 
time-dependent error, measured by the 
discrepancy between the observed and 
predicted link traffic counts at specific time 
points, exceed a pre-defined threshold. The 
AHP determines the relative weights of the 
TDPs in the current stage σ, which are used 
to rank order the TDPs according to their 
significance to inconsistency. A subset of 
TDPs with the top r ranks (i.e., 1 through r 
out of the total f paths in the current stage) is 
chosen as the dominant path set, denoted by 
c. All O-D pairs that contain the dominant 
paths are used to determine various inputs 
to the A-CONS model, including a predicted 
link-path incidence matrix t

cL̂σ , a predicted 
transition matrix t

c
ˆ σΦ , a predicted vector t

cR̂σ

denoting the time-dependent number of 
travelers on the paths c, and the observed link 
traffic counts t

cXσ . The A-CONS model then 
uses the above inputs to determine the vector 
of “corrected” path f lows in the current 
stage that minimize the time-dependent 
prediction errors in the network. The TDPs 
with the lower rankings r+1 to f are not used 
in the inconsistency correction procedure.
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Fig. 1. 
AHP-Based Framework for the Consistent Real-Time DTA Problem

Fig. 2. 
The Rolling Horizon Framework for the Consistent On-Line DTA Problem



175

International Journal for Traffic and Transport Engineering, 2016, 6(2): 168 - 187

The rest of the procedure is essentially 
identical to the framework in Peeta and 
Bulusu (1999). The rolling horizon based 
DTA (RH-DTA), as illustrated in Fig. 2, 
is used to solve for the predicted traffic 
states for stage σ. It is used to predict the 
link traffic counts towards the end of stage , 
and determine the path assignments for the 
roll period of this stage. A comprehensive 
description of the RH-DTA algorithm and 
its implementation is provided in Peeta and 
Mahmassani (1995).

In the proposed A-CONS model, a subset 
of dominant TDPs is identified and utilized 
to correct inconsistency. Thereby, the 
dimensions of the A-CONS model and 
the corresponding computational effort 
are reduced substantially. The key aspect 
of A-CONS model is how to ensure that 
the signif icant factors inf luencing the 
consistency are appropriately identified for 
the rank ordering of the paths.

3.2. The Problem Statement

A traffic network is represented by a directed 
graph G(N, A) where N is the set of nodes and 
A is the set of directed arcs. Denote by tR̂σ

a f-dimensional vector of predicted (time-
dependent) number of travelers on f paths 
up to time t, ˆ ótTT  a vector of predicted (time 
dependent) travel times on f paths, and t

k
σΨ  

a vector of number of links on each path k.

Denote by tD̂σ  the predicted number of 
vehicles at the origin at time t γ κ ϕ= − −  (see 
Fig. 2) in stage σ. The AHP model seeks rank 
order the TDPs in terms of their contribution 
to the real-time consistency.

3.3. The AHP Model

This section discusses the AHP model 
for identi f y ing a subset of dominant 
paths according to their signif icance 
in contributing to inconsistency for the 
real-time DTA problem. First, a pairwise 
comparison matrix is developed for each 
objective in AHP. An objective represents 
a factor contributing to inconsistency. In 
A-CONS two factors are considered, O-D 
demand and TDPs for each O-D pair. The 
two factors are modeled in the following 
hierarchy approach. At the first hierarchy 
level, a pairwise comparison matrix of all 
O-D pairs is established based upon the 
demands. This incorporates the effect 
of how O-D demand inf luences the path 
characteristics. Suppose the rest factors have 
equal effects, an O-D with larger demand 
has more contribution to congestion (link 
and path f lows) and inconsistency (link 
and path flow errors between observed and 
predicted states). The second hierarchy 
level addresses the relative importance of a 
path in an O-D pair relative to consistency. 
The weight for each TDP is determined 
and its priority is computed based upon 
its contribution to the inconsistency in a 
specific O-D pair. 

In the first hierarchy, the O-D comparison 
matrix has the following structure:

 

(6)
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where b is the number of O-D pairs. ˆ
pqθ is an 

element of the matrix specifying the ratio 
of demand between O-D pairs p and q by 
Eq.(7):

 
(7)

where , kj denotes the number of 

paths for O-D pair j,
 
and ˆ

jD is the total 
predicted time-dependent O-D demand for 
O-D pair j at time t in stage σ. 

tˆ σΘ  is an b b×  square matrix with diagonal 
elements of value 1, and sat isf ies the 
reciprocal property (see Eq. (8)).

Due to the reciprocal feature of tˆ σΘ , the 
vector of relative weights  can be computed 
by solving the equation  . As 
discussed in Section 2.2, the eigenvector 
associated with the maximum eigenvalue λmax 
specifies the weight  is normalized

by 

 

, where 
 
is the element in 

vector  is the summation of all the 
elements in the vector . The normalized 

vector is unique, and also
  

.

 

(8)

The second hierarchy level addresses the 
relative importance of a path in an O-D 
pair relative to consistency. For each O-D 

pair s, a comparison matrix 
 
is developed 

that comprises of ks paths for s. Hence, n 
comparison matrices are developed. An 
element of the path comparison matrix for s is 
given by ˆ t

ijcσ , where i, j ∈ ks, and is computed 
as follows:

 (9)

The factor 
 
for path i ∈ ks in the O-D pair s 

is computed as:

 
(10)

where 

 = the predicted number of vehicles on 
path i of O-D pair s at time t in stage σ

 = the predicted travel time on path i 
of O-D pair s at time t in stage σ

 = number of links on path i of O-D 
pair s at time t in stage σ

The structure of ˆ t
si
σΓ in Eq. (10) is based 

on the factors that determine the relative 
importance of one path compared to 
the others in terms of contribution to 
consistency. The numerator, ˆ t

siRσ , is a 
straightforward indicator of the path’s 
contribution to the traffic f low. A large 
value of ˆ t

siRσ implies a larger upper bound 
on the potential error between predicted 
and observed path f lows. A better measure 
relative to consistency would be the errors 
in the l ink or path f low counts rather 
than just the predicted path f low ˆ t

siRσ . The 
denominator represents the average travel 
time per link of path i. t

si
σΨ is used to remove 

the potential bias introduced by the number 
of links in a path. Thereby, congestion, rather 
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than the distance between the origin and 
destination, is the focus of consistency. A 
large denominator value implies more severe 
congestion on path i due to the congestion 
on one or more of its links. 

Based on Eqs. (9) and (10), the path 
comparison matrix is also a reciprocal matrix 
and has the following structure:

 

(11)

The weights of the path comparison matrix 
are obtained by solv ing the equation 

. The eigenvector is normalized 
to obtain the relative weights of the paths for 
the O-D pair s, as shown in Eq. (12):

 

(12)

where  is the sum of values in the 
eigenvector associated with the maximum 
eigenvalue for the O-D pair s. The maximum 
eigenv a lues a nd t he cor res pond i ng 
eigenvectors are obtained for all O-D pairs 
and normalized. The matrix tÛσ , defined as 
the relative weights for all S O-D pairs, is of 

the dimension (K × S), where K equals
1

S

s
s

k
=
∑

. The vector of path priority values,  , is 
obtained as the product of the normalized 
path relative weights tÛσ and the normalized 

O-D pair weights  :

1 max,11

max,22 2

,max
1 max,

ˆ 0 0 ˆˆ
ˆ ˆˆ 0 0 1

ˆ
ˆˆ ˆ0 0

S

i
i SK S

U wv
wv U

w
wv U =

    
    
     = ×    
    
     

∑





   

  

(13)

The path priority values in Eq. (13) are used 
to determine the rankings of the TDPs in 
the network according to their significance 
to enabling consistency. These paths are 
used to determine the predicted state of 
the system ( )t

c
t

c
t

c
t

c X̂,ˆ,L̂,R̂ σσσσ Φ  for the A-CONS 
model. The subscript “c” indicates that 
only dominant paths are used to predict 
the system state.  is a vector of predicted 
(time-dependent) number of travelers on the 
set of dominant paths,  is a predicted time-
dependent enhanced link-path incidence 
matrix. It indicates the proportion of the 
number of travelers on a set of TDPs which 
passes a given link. The elements of  are 
fractions between 0 and 1.  is a predicted 
transition matrix which indicates the time-
dependent existence of paths for every O-D 
pair. It consists of binary values 0 and 1, 
where 1 indicates the existence of a path.  
is a vector of predicted link count.

The simulation-based numerical experiments 
in Section 4 explore the impact of the set of 
dominant paths in terms of how much they can 
correct the discrepancy between the observed 
and predicted system states (in terms of travel 
times and the consistency indices). 

3.4. Algorithm for Consistent Real-Time 
DTA Problem Including Path Prioritization

This section discusses the solution procedure 
of the A-CONS model leveraging the set 
of dominant TDPs identified by AHP, as 
illustrated in Fig. 3. The algorithm for 
consistent real-time DTA consists of two 
components: (i) a rolling horizon based 
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deterministic DTA solution algorithm 
(Peeta and Mahmassani, 1995), and (ii) an 
AHP-based consistency solution algorithm. 
The consistency solution component fits 
seamlessly with the notion of execution 
cycles within the context of real-time DTA 
system operations. It can be triggered at 
discrete (and unequal) time points based 
on the logic for consistency check internally 
embedded with the real-time DTA solution 
algorithm, as discussed hereafter.

Solution Algorithm
Step 0: Set stage  = 0. It represents the 
time at the start of the planning horizon 
of interest.

Step 1: Obtain the O-D demand for stage 
 and information on current network 

conditions at time  (see Fig. 2) prior 
to the start of stage . Initial paths for 
users in stage  are obtained either 
exogenously from historical data or from 
current network conditions.

Step 2: Execute the deterministic RH-DTA 
algorithm for the stage  at time  before 
in stage  to determine the set of predicted 
path f low vector R̂  for stage .

Step 3: AHP Algorithm 
Let . From Step 2, obtain the 
predicted state of the network , in terms 
of number of users on each TDP, , the 
predicted time dependent travel times on 
each path, the predicted time-dependent 
O-D demand for each O-D pair , the 
number of l inks on each path , and 
link-path incidence matrix tL̂σ  for time 

 of the current stage σ. Also, 
obtain the corresponding predicted link 
traffic counts tX̂σ  from the deterministic 
DTA solution.

Step 3.1: Using , obtain the pairwise 
comparison matrix  using Eq. (8).

Step 3.2: Obtain the eigenvalues and 
eigenvectors of the pairwise comparison 
matrix by solving the equation ( )Iˆ t λ−Θσ  

tŴσ  = 0. The maximum eigenvalue and 
the corresponding eigenvector are used 
to obtain the relative weights of the O-D 
pairs. The eigenvector is normalized to 
obtain the normalized relative weights 

t
maxŴσ  of all O-D pairs.

Step 3.3: Using ,  and  determine 
the path comparison matrix tĈσ .

Step 3.4: The maximum eigenvalue and 
the corresponding eigenvector of the path 
comparison matrix tĈσ  for each O-D pair 
are used to provide the relative weights of 
the paths for each O-D pair. The relative 
weights are normalized by Eq. (11). The 
matrix tÛσ  denotes the normalized path 
relative weights for all O-D pairs.

Step 3.5: Compute the vector of path 
priorities  using Eq. (12). They are 
used to rank TDPs in the network at time 

 in stage σ.

Step 3.6: A subset of TDPs with the top 
rank orders determines the dominant 
path set in the network. These TDPs are 
used to obtain the predicted network state 
described by t

c
t

c
t

c
t

c X̂,ˆ,L̂,R̂ σσσσ Φ , which is 
used as input to the A-CONS in Step 6.1.

Step 4: Implement the path assignments for 
the roll period of stage σ.

Step 5: Obtain the observed link traffic 
counts, tXσ  at time  in the 
current stage. If ≤− σσ tt X̂X ε for all links 



179

International Journal for Traffic and Transport Engineering, 2016, 6(2): 168 - 187

in the network (where ε is a positive scalar 
specifying a threshold), consistency is 
preserved; go to Step 7. Otherwise, go to 
Step 6.

Step 6: Use Consistency Solution Algorithm 
(Peeta and Bulusu, 1999) to obtain the 
corrected network state tR~ σ  at time .  
The consistency solution algorithm applies 
a generalized singular value decomposition 
(GSVD) approach to determine  
simultaneously that are consistent with the 
observed link counts .

Step 6.1: 
, where ~ represents the corrected states. 

t
0L  is a vector of corrected time-dependent 

enhanced link-path incidence matrix 
at the initial iteration;  is a vector of 
corrected time-dependent transition 
matrix at the initial iteration; t

0R  is a 
vector of corrected number of travelers 
on TDPs at the initial iteration; and t

0X  
is a vector of correct link counts at the 
initial iteration. Also, observed link 
counts  and O-D demand tDσ  at time t 
are obtained. Set iteration number i = 0.

Step 6.2: Appendδ  I to the enhanced 
link-path incidence matrix t

iL~ , where δ  
is a small scalar, and I is an identity matrix 
with dimension of t

iR

 δ
 

=  
 

t
i

i
L

L
I




 
and

 
t
ii

~~ Φ=Φ

Step 6.3: Decompose the matrix iL~  and 
transition matrix i

~Φ  using an orthogonal 
transformation (Peeta and Bulusu, 1999) 
to obtain an upper triangular invertible 

matrix M and orthogonal matrices Q1 and 
Q2 such that iL~  = Q1 M and i

~Φ  = Q2 M.

Step 6.4: Decompose Q1 and Q2 using the CS 
decomposition (Peeta and Bulusu, 1999), a 
simultaneous diagonalization algorithm, to 
obtain diagonal matrices C and S.

Step 6.5: Obtain the corrected state of 
the network t

1iR~ + .

Step 6.6: Using t
1iR~ +  as the input to 

the traffic f low model, determine the 
corresponding link-path incidence matrix 

t
1iL~ +  and transition matrix t

1i
~

+Φ .

Step 6.7: T he convergence of th is 
algorithm is assumed if the following 
criteria are satisfied:
(i) If errors in link traffic counts are within 
the threshold α of observed counts, and 
(ii) If the error in terms of the average 
vehicular travel time in the roll period of 
stage  is within  % of the observed time 

 at time t.
Criterion (ii) is used only if the travel times 
can also be observed. If convergence is 
achieved, go to Step 7. If not, set i = i + 
1, and go to Step 6.2 of the consistency 
solution algorithm.

Step 7: If the end of the planning horizon is 
reached, stop the rolling horizon procedure.
I f not, store the posit ions and other 
characteristics of all vehicles in the network 
at . This information is obtained 
from Step 6 if the state is corrected for, or 
from Step 2 if consistency execution is not 
required in stage . Go to Step 1.
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Fig. 3. 
Solution Framework for the AHP-Based CONS Model

4. Simulation Experiments

The performance of the proposed AHP-
based CONS model for the real-time DTA is 
analyzed using simulation-based numerical 
experiments. The traf f ic and network 
characteristics are discussed in Sections 
4.1 and 4.2, respectively. The performance 
measures used to analyze the consistency 
solution framework are as follows:

1. Percentage error in average travel time: 
This index provides the percentage error 
in average travel time for all vehicles in 

the roll period of a stage. It provides the 
percentage deviation of the travel time of 
the predicted state from the observed state, 
and is computed as:

%100*
TT

T̂TTT
t

tt

σ

σσ −
 (14)

where:
 = Observed average travel time at time 

t in stage σ
 = Predicted average travel time at time 

t in stage σ

2. Consistency in link traffic counts: is 
defined as the two-norm of the difference 
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in the number of users on a link under the 
observed and predicted states. It is computed 
as follows:

2

12

ˆ( )ˆ t t
t t i i

i
l

Z ZZ Z
I

σ σ
σ σ

Ψ

=

−−
= =

Ψ Ψ

∑
 

(15)

where:
lI  = Link consistency measurement

tZσ  = Observed state of the network (link 
count) at time t in stage σ
ˆ tZσ  = Predicted state of the network (link 

count) at time t in stage σ
Ψ  = Total number of links

The consistency measurement indicates the 
average error per link in terms of the number 
of users on that link. The normalization 
al lows comparison of the consistency 
measurement across stages.

3. Path Consistency measurement (Ip): Ip 
is defined similar to the link consistency 
measurement (Eq. (15)), except that link 
counts are replaced by number of users on 
TDPs, and Ψ  is replaced by number of paths. 
It is pertinent to note that while the first two 
indices are measurable, current technology 
precludes complete determination of Ip in the 
real world. It is used here primarily to derive 
insights on the consistency solution algorithm.

4.1. Network Configuration and Traffic 
Characteristics

As shown in Fig. 4, the test network includes a 
freeway and the surrounding arterials. It consists 
of 50 nodes and 168 links, 32 origins (all nodes 
except freeway nodes 38-43 and 45-50, and nodes 
9, 10, 15, 16, 21 and 22) and 10 destinations 
(nodes 2, 5, 13, 18, 25, 30, 35, 36, 37, 44).

Fig. 4.
The Test Network
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Table 1 specifies the user class characteristics 
of the vehicles generated in the network. In 
the experiments, all four user classes are 
assumed to be equally represented. The 
parameters α and β denote the threshold 
errors in terms of link traffic counts and 
average vehicular travel time, respectively. 

α and β are determined through sensitivity 
analysis; they are 15% and 6%, respectively, 
in these experiments. Also, those users who 
have not reached their destination in the 
current stage and have an expected remaining 
travel time greater than 15% of the roll period 
are used in the consistency analysis.

Table 1
User Class Characteristics

User Class Percentage (%) Type of Information
System Optimal1 (SO) 25 Pre-trip
User Equilibrium2 (UE) 25 Pre-trip
Boundedly Rational3 (BR) 25 Pre-trip + En route
Pre-Specified4 (PS) 25 No Information

1 Equipped users following prescribed system optimal paths. Users who are either unfamiliar with the typical 
network traffic conditions or affected by a severe incident are likely to follow this information.
2 Equipped users following prescribed user equilibrium paths. Users who are very familiar with the typical 
network traffic conditions are likely to follow this information.
3 Equipped users following the boundedly rational switching rule in response to descriptive information on the 
prevailing network conditions. The switching rule states that users switch from their current path at decision 
points if travel time savings on an alternative route exceed a threshold value.
4 Unequipped users following pre-specified paths. These paths are either determined from historical data 
(representing past network experience) or solved for exogenously based on current conditions. It is assumed that 
in the absence of information, users do not switch routes en route.

The AHP-based framework is analyzed at the 
third stage of the planning horizon, which 
comprises of 1,560 paths and 4,031 users, as 

shown in Table 2. It is assumed that traffic 
conditions are normal and no incidents occur 
in the network over the horizon of interest.

Table 2
Stage Traffic Characteristics

Stage Number Number of Paths Number of Users
2 1377 3008
3 1560 4031
4 1430 3031
5 1458 3072
6 746 1245

4.2. Scenarios Addressed

Two scenarios are considered to investigate 
the effectiveness of the proposed A-CONS 
model.

Scenario 1: The effectiveness of the solution 
algorithm with the dominant path set is 
investigated for three different sets of rank-
ordered paths. The first set comprises of the 
most dominant paths (150 paths), ranked 
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from 1 to 150. The second set consists of 
paths ranked 250 to 400, and the third 
set comprises of the least dominant paths 
that are rank ordered from 1,410 to 1,560. 
The objective is to analyze whether more 
dominant paths are more ef fective in 
correcting the gaps between the predicted 
and observed states.

Scenario 2: The objective of this experiment 
is to study the marginal improvement in 
terms of travel time error and the consistency 
index when more paths are included in the 
dominant path set. The paths are included in 
increments of 150 based on their rank-orders.

4.3. Analysis of Results

Figs. 5-7 show the results for Scenario 1. Fig. 
5 illustrates the AHP-based performance 
relative to consistency in terms of percentage 
errors in travel times for the three different 
sets of rank ordered paths for the 3rd stage. 
The initial error between the observed and 
predicted states is 58%. When the A-CONS 
is used with the paths ranked from 1 to 150, 
the percentage error of average travel times 
is reduced to 10% of the observed travel 
time over 11 iterations. Similarly, the error 
is reduced to 21% of the observed travel time 
when paths ranked 250 through 400 are 
used, and to 47% when the least significant 

paths (ranked 1,410 to 1,560) are used in the 
consistency solution procedure. The results 
indicate a significant improvement in terms 
of average travel time errors when only the 
top 150 ranked paths are used. 

Figs. 6(a) and 6(b) illustrate the link and path 
consistency measurements, respectively, 
for this scenario. The average error per link 
in terms of traffic counts is less than 4.1 
for the first set, about 4.6 for the second, 
and about 5.0 for the third. Similarly, the 
average error in terms of number of users 
on TDPs is 4.2, 4.8 and 5.1 for the three 
sets, respectively. The results clearly 
demonstrate the hierarchical nature of the 
TDPs relative to enabling consistency. They 
suggest important paradigms for the real-
time deployment of DTA for ATIS/ATMS 
equipped networks in terms of achieving 
computational feasibility and efficiency.

Scenario 2 investigates the performance in 
terms of enabling consistency when more 
paths are included, by analyzing the marginal 
improvement when each incremental set of 
paths is added to the cumulative set of paths 
considered. Table 3 illustrates the number of 
users in each path set. Each set comprises of 
150 paths, except for the last one. In general, 
the more paths in the dominant set, the more 
the number of users.

Table 3
Path and Vehicle Characteristics: Stage Number =3, Number of Paths = 1560, Number of Vehicles = 4031

Path Ranking
Relative to 
Enabling
Consistency

Path Set 
Number

Number 
of 
Vehicles

Percentage 
of Vehicles in 
this Path Set

Path Ranking
Relative to 
Enabling
Consistency

Path Set 
Number

Number 
of 
Vehicles

Percentage 
of Vehicles in 
this Path Set

1 - 150 1 1014 25.16 751 – 900 6 277 6.87
151 - 300 2 629 15.60 901 – 1050 7 241 5.98
301 - 450 3 487 12.08 1051 – 1200 8 238 5.90
451 – 600 4 398 9.87 1201 – 1350 9 220 5.46
601 – 750 5 314 7.79 1351 - 1560 10 213 5.28
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Fig. 7 illustrates the percentage difference 
in travel times between the observed and 
predicted network states with cumulative 
increments of ordered TDPs. A significant 
reduction in errors is obtained when the 
first set of rank-ordered paths is used as 
they involve about 25% of the demand. 
Also, by the 8th iteration, all cumulative 
paths sets other than the first 150 paths 
achieve convergence (within 6.25%). 
Including more paths in the consistency 
procedure signi f icant ly reduces the 
number of iterations to convergence, but 
increases the computational time. The 
total reduction in travel time errors is 
11.4% when all paths in the network are 
used in the consistency procedure. Fig. 
7 provides important insights for real-
time paradigms and strategies that seek 
to trade-off computational efficiency and 
performance (in terms of consistency). As 
more paths are considered, the number of 
iterations required to achieve convergence 
also decreases. Thereby, when around 900 
paths (58% of all paths) are considered, 
convergence is achieved in 4 iterations as 
compared to 3 iterations when all paths are 
considered. Also, because of the reduced 
number of paths, 4 iterations may take 

significantly less time than 3 iterations in 
which all paths are considered. Hence, the 
path set that considers paths 1 through 900 
is a superior real-time consistency strategy 
than the one considering all paths. This 
improves the computational performance 
for on-line deployment while maintaining 
similar convergence characteristics. For the 
same reason, paths 1-600 and 1-750 are also 
attractive alternatives. 

Figs. 8 and 9 illustrate the link and path 
consistency measurements, respectively. 
They reiterate the insights for real-time 
paradigms observed in Fig. 7. The average 
error per l ink is w ithin 4 vehicles at 
convergence when 300 or more paths are 
used in the A-CONS model. Similarly, the 
average error in terms of number of users on 
each path is within 5 users at convergence 
for all paths. The AHP model uses about 1 
to 5 seconds of CPU time depending on the 
number of paths. These results indicate that 
use of a subset of paths in the consistency 
solut ion procedu re on ly ma rg i na l ly 
deteriorates the system performance in 
terms of travel time errors and consistency 
measurements while substantially improving 
the computational efficiency.

Fig. 5.
Comparison of the Three Sets of Rank Ordered 
Paths Relative to Enabling Consistency, in Stage 3

Fig. 6a.
Comparison of Link Consistency Indices for the 
Three Sets of Rank Ordered Paths, in Stage 3
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Fig. 6b.
Comparison of Path Consistency Indices for the 
Three Sets of Rank Ordered Paths, in Stage 3

Fig. 7.
Travel Time Errors with Cumulative Sets of 
Ordered Paths

Fig. 8.
Link Consistency Index with Cumulative Sets of 
Ordered Paths

Fig. 9.
Path Consistency Index with Cumulative Sets of 
Ordered Paths

5. Concluding Comments

T he A H P is a w idely-used approach 
for decision-making involving multiple 
criteria. In this paper, the AHP is used 
to prioritize the TDPs in a network for 
enabling on-line consistency. From an 
operational perspective, the AHP model 
forms a pre-processor for the CONS model 
and determines a subset of dominant paths 
that significantly contribute to enhancing the 
consistency. An eigenvector based approach 
is used to identify the relative weights of the 
demand characteristics of O-D pairs and the 

path f low characteristics in relation to the 
TDPs in the network. The relative weights 
are used to rank order the paths. 

The ex per imental insights conf irm a 
hierarchical structure for paths in terms 
of enabling consistency. An important 
paradigm for real-t ime deployment is 
the notion of consider ing a subset of 
dominant paths. The results emphasize the 
identification of such subsets to enhance 
consistency while significantly improving 
computational efficiency. The study insights 
also indicate that the eigenvalues associated 
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with paths represent parameters that can 
signify the relative importance of a path for 
enabling consistency. 

The study experiments also establish the 
value of the hierarchical structure of TDPs 
in relation to the O-D demand. As illustrated 
in Table 3, 52% of the demand was observed 
on 29% of the paths. Therefore, minimizing 
the error between the observed and predicted 
states on 29% of the paths significantly 
improved consistency. The proposed A-CONS 
model can also be used in a decentralized 
network that lacks coordination among zones, 
and where the objective is to improve the 
local performance as opposed to the overall 
performance of the network.
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