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Abstract: This study examines the capability of centrality parameters of the road network to 
explain and predict traffic flow by types of vehicles. The case study was conducted in Colombo 
Metropolitan Area, Sri Lanka. Study used four centrality parameters i.e. connectivity, global 
integration, local integration and choice; and three analysis methods i.e. topological, metric 
and angular which introduced by space syntax analysis method to compute network centrality 
of the road network. Findings of this study stress that, (1) human beings perceive the space 
mostly from geometrical distance (topological and angular distance) in comparison to metric 
distance. Further to this, it was found that angular distance is more powerful in global level 
whereas topological distance is more powerful in local level; (2) it is more appropriate to 
consider the multiple influences from multiple centrality parameters rather being confined 
to a single best parameter and influence of each parameter varies based on type of vehicles.
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1. Introduction

Rapid increase of vehicle movements has 
created several problems such as traffic 
congestion, road accidents and air pollution 
in urban areas. Accordingly, identification 
of locations which attract more traffic and 
finding out reasons for that; and prediction 
of future traffic f low scenarios based on 
proposed transport networks and land use 
changes are some important tasks that most 
of the practitioners and researchers in traffic 
and transport engineering and planning as 
well as in urban planning and spatial design 
are involved the most. This understanding 
guides traffic and transport engineers and 
planners to resolve many burning issues 

related to traffic f low (Noulas et al., 2012). 
Therefore, “quantitative analysis and 
modeling of traffic f low has become a hot 
topic in both transportation research and 
geographical information science” (Gao et 
al., 2013). However, “road network models 
have traditionally characterized network 
performance in terms of an average travel 
t ime associated with each l ink in the 
network, which varies according to the level 
of traffic using the link while ignores the 
inf luence of network geometry on route 
choice behavior” (Chiaradia, 2007). At the 
same time, recent research carried out by 
Cutini (2001), Holme (2003), Crucittia et 
al. (2004) Hillier and Iida (2005), Altshuler 
et al. (2011), Jiang and Jia (2011), Galafassi 
and Bazzan (2014), Jiang et al. (2014) 
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highlighted the importance of considering 
the road network geometry and topology 
in the process of modeling or simulating 
traffic f low patterns.

Those studies are focused on an emerging 
set of research literature which is developed 
based on the graph theory and centrality 
measures. Accordingly, the group of scholars 
in London led by Bill Hillier (Hillier and 
Hanson, 1984), (Hillier, 1999) mapped 
the centrality in cities under the notion of 
space syntax. In space syntax, centrality 
was termed as ‘integration’ and mapped as 
a property topology of the space on an index 
of closeness or accessibility and it recognized 
that human movements are related to the 
level of integration of a given Road network 
(Hillier, 1999). Porta et al. (2006) have 
introduced Multiple Centrality Assessment 
(MCA), MCA application measures the level 
that a given location is “being central” not 
only through the means of being close to all 
others (i.e. Closeness), but also through the 
means of being intermediary between others 
(i.e. Betweenness), being straight to all others 
(i.e. Straightness) and being critical for the 
efficiency of the system as a whole (Porta et 
al., 2006). Those researches provided the 
back bone to a wide spectrum of options on 
the use of centrality measures to explain and 
predict human and vehicular traffic flow. Jun 
et al. (2007) used ‘depth’ (weighted syntax 
based on O-D trips) centrality measure in 
space syntax to model the number of transfers 
in the journey of rail, tram, and bus routes 
in Seoul city, Korea. Scheurer et al. (2007) 
identified and visualized the strengths and 
weaknesses of public transport networks, 
in terms of geographical coverage, network 
connectivity, competitive speed and service 

levels, by using multiple centrality measures 
i.e. degree centrality, closeness centrality 
and betweenness centrality in urban public 
transport networks of Australian cities 
(Perth, Melbourne). Kazerani and Stephanr 
(2009) used modified version of betweenness 
centrality and studied dynamics and temporal 
aspects of people’s travel demand in CBD 
area. Jiang and Jia (2011) explored complex 
collective human movement behaviors in 
geographic space and what kind of useful 
patterns or knowledge can discover from 
using network centrality with agent-based 
simulation based on London street network. 
Altshuler et al. (2011) used augmented 
betweenness centrality measure for mobility 
prediction in transportation networks based 
on Israeli roads and highways system.

In that background, this research attempted 
to constructively contribute in overcoming 
one of the key limitation noted in the above 
mentioned emerging research in relation 
to traffic and transport engineering and 
panning domain. That is, those studies have 
been focused on total traffic volume or one 
mode of traffic rather compare and contrast 
the characteristics of traffic f low pattern 
by type of vehicle (i.e. motor cycles, three 
wheeler, cars, bus, heavy vehicle etc.) in 
relation to centrality measures. Addressing 
the above gap, this study attempted to 
explain the predominant road network 
centrality characteristics that attract more 
vehicular traffic by type of vehicle using road 
network of the Colombo Metropolitan Area 
(CMA), Sri Lanka.

The rest of this paper is organized as 
follows. The second section introduces the 
methodology along with a short description 
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about the study area. Analysis and results 
describe in the section three. Conclusions 
and recommendations for future studies 
then follow in section four.

2. Methodology
T he s t u d y  c o nd u c t e d  i n  C olo m b o 
Metropolitan Area (CMA) which is the 
main urban agglomeration area in Sri 
Lanka. CMA is one of the emerging urban 

agglomerations in south Asia with 5.8 million 
residential population (30% of the country 
population) and it account 50% of country’s 
GDP (Department of Census & Statistics, 
2012). The per capita trip rate is recorded 
as 1.87 per person (JICA, 2014) and around 
700,000 trips are generated within the CMA 
area (JICA, 2014). Table 1 gives a brief 
description about the traffic and transport 
characteristics of CMA area.

Table 1
Traffic and Transport Characteristics of CMA Area 

Mode Share of Vehicle Ownership Modal Share Average Trip Length (km)
NMT (Non-Motorized Modes) - 21.5% 2.2
Railway - 2.7% 25.0
Bus 1% 37.7% 9.2
Three Wheeler 23% 12.9% 4.1
Motorcycle 49% 14.1% 6.7
Car 23% 11.1% 7.6
Heavy vehicle 4% - -

Source: (JICA, 2014)

The study comprised of three main steps. 
The f irst was the preparation of a GIS 
database. The second was the ‘Network 
Centrality Assessment’ (NCA). The third 
was to investigate a possible relationship 
between the network centrality and actual 
vehicle traffic volumes.

2.1. Stage 1 - Preparation of the GIS 
Database

Main objective of this research is to study the 
relationship between road network centrality 
characteristics and volume of traffic flow by 
type of vehicle. To do that, this study was 
prepared GIS database including information 
related to road network and traffic volume. 
Required data were collected from secondary 
sources and stored in ArcGIS database. Table 
2 gives a brief discerption about those data.
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Table 2
Description of GIS Database

Data Type Source Description
Average daily vehicular traffic 
volume by type of vehicle (car, 
motorcycle, three wheeler, bus, 
heavy vehicle)

Road Development Authority 
(RDA), Sri Lanka and 
JICA Report (2014)

Digital data, 
Point source, 
56 Locations within the CMA

Road network Survey Department, Sri Lanka 
(2010)

Digital data, 
Road centerline as polyline, 
Scale 1:10,000 

2.2. Stage 2 - Network Centrality 
Assessment (NCA) 

The method used for NCA in this study 
was based on the space syntax approach. 
This study used two types of graphs; ‘axial 
segments’ (this will be referred as ‘road 
segments’ in rest of the paper) and ‘natural 
roads’ to represent road networks. Metric, 
topological and angular (geo-metrical) 
analysis techniques are employed to compute 
network centrality based on connectivity, 
global integration, local integration and 
choice centrality parameters. Refer Fig. 1 
for more details.

Initial step of the NCA was preparation 
of a graph based on the real road network. 
Accordingly, two types of graphs (i.e. road 
segments graph and natural roads graph) 
were prepared in this study. Refer step-1 in 
Fig. 1 for more details. Preparation of the 
road segments graph followed the method 
which is introduced by Turner (2001) and 
it enabled the angular analysis technique of 
space syntax. Accordingly, centerlines of road 
network were used and in order to prepare the 
road segments graph, each road centerline was 
broken at the intersection (i.e. the place where 
two or more centerlines meet). To do that, 

coverage file creation option of ArcGIS 10.0 
was used. Preparation of natural roads graph 
is followed the method which is introduced by 
Jiang and Liu (2009). Accordingly, Axwoman 
extension in ArcGIS 10.0 was employed to 
create natural roads graph by tracking the 
road segments in the road segments graph. 
45 degree was considered as the angle change 
limitation value. 

Then, level of centrality of each link in terms 
of centrality parameters was computed based 
on metric, topological and angular analysis 
techniques. In metric analysis technique, 
the centrality of links is computed based 
on the metric distance along the links and 
distance cost for each link is the length of the 
segment (Hillier and Iida, 2005) whereas in 
topological analysis technique, the centrality 
of links is computed based on the topological 
distance and distance cost for each link is 
the number of turn made from one link to 
another (Hillier and Iida, 2005). In angular 
analysis technique, the centrality of links is 
computed based on the geometric distance 
along the links and distance cost of each 
links is the angle change from one link to 
another (Hillier and Iida, 2005). Refer the 
‘analysis technique subsection’ of step-2 in 
Fig. 1 for more details. 
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Using those graphs, centralities of each link 
were calculated based on (1) Connective 
centrality (Ci); the level of Ci refers the 
number of links to which the particular 
link is directly connected in the graph, (2) 
Global Integration (GIi); level of GIi refers 
the extent that given link close to all other 
links in the graph, (3) Local Integration 
(LIi); level of LIi refers the extent that given 
link close to all other links in radius of 3 or 
7 steps away from it, and (4) Choice (Chi); 
level of choice is refers the extent a given 
link belongs to the shortest-path between 
any pairs of two links in the graph. Refer 
step-2 centrality parameters subsection 
in Fig. 1 for more details. Accordingly, 
centrality of links in road segments graph 

was computed based on three analysis 
techniques by using UCL Depth Map 10 
software application. However, centrality 
of links in natural roads was computed only 
based on topological analysis method due to 
the limited functions of software (Axwoman 
extension in ArcGIS and Pajek software 
applications). Refer step-2 in Fig. 1 for more 
details.

Final ly, those outputs were spat ia l ly 
joined and created the centrality index. 
The centrality index is comprised with 
centrality values according to the 14 different 
parameters, spatial coordinates and reference 
ID number of each links. Refer step-3 in Fig. 
1 for more details.

Table 3
Centrality Combinations Calculated under the NCA

Type of 
graph

Analysis technique
Metric Topological Angular

Road 
segments

Global Integration (RS-M-GI)
Local Integration (RS-M-LI)
Choice (RS-M-Ch)

Connectivity(RS-T-C) 
Global Integration(RS-T-GI)
Local Integration(RS-T-LI)
Choice(RS-T-Ch)

Global Integration(RS-A-GI)
Local Integration(RS-A-LI)
Choice (RS-A-Ch)

Natural 
roads

Connectivity(NR-T-C) 
Global Integration(NR-T-GI)
Local Integration(NR-T-LI)
Choice(NR-T-Ch)
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Fig. 1.
Network Centrality Assessment (NCA)
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2.3. Stage 3 - Relationship Analysis 

The third stage was to investigate if any 
possible relationships exists between the 
network central ity and actual vehicle 
traffic volumes. The ‘Centrality Index’ and 
‘Vehicular Traffic Index’, which include 
information related to average daily vehicular 
traffic by type of vehicles, were compared 
to recognize relationships. The analysis 
was carried at two levels. First, bivariate 
pearson correlation coefficient test in SPSS 
(Statistical Package for Social Science, 18th 
version) software was employed to find out 
the nature and the strength of a relationship 
between different centrality values and 
vehicular traffic volume by type of vehicle. 
Then, forward multiple regression analysis 
was employed to identify cumulative impact 
from different centrality parameters on 

vehicular traffic by type of vehicles. A quasi-
hedonic model explaining the vehicular 
traffic volume by type of vehicles taking 
the following form is going to be created, 
tested, and analyzed in multiple regression. 

Vehicular traffic volume by mode i =

ƒ(RS-M-GI . RS-M-LI . RS-M-Ch . RS-T-C 
. RS-T-GI . RS-T-LI . RS-T-Ch . RS-A-GI . 
RS-A-LI . RS-A-Ch . NR-T-C . NR-T-GI . 
NR-T-LI . NR-T-Ch)

Results of those two analyses are summarized 
in next section.

3. Analysis and Inferences 

Table 4 illustrates the summary of the result 
reveled from correlation analysis.

Table 4
Summary Results of Correlation Test

V
eh

ic
le

 ty
pe

Type of graph

Metric distance Topological distance Angular distance

Ci GIi LIi Chi Ci GIi LIi Chi Ci GIi LIi Chi

M
ot

or
 

C
yc

le Road segments - .29** .37** .30** .14** .31** .64** .03** - .33** .57** .22**

Natural roads - nc nc nc .42** .08** .18** .24** - nc nc nc

C
ar

Road segments - .43** .32** .22** .09** .06** .36** .04** - .67* .46* .37*

Natural roads - nc nc nc .54** .43** .24** .21** - nc nc nc

T
hr

ee
 

W
he

el
er Road segments - .23** .42** -.41** .79** .16** .45** -.41** - .46** .40** -.64**

Natural roads - nc nc nc .08** .07** .13** -.15** - nc nc nc

Bu
s Road segments - .34** .23** .72** .23** .06** .63** .34** - .38** .55** .78**

Natural roads - nc nc nc .12** .22** .01** .41** - nc nc nc

H
ea

vy
 

Ve
hi

cl
e Road segments - .39** -.33** .71** .28** .05** -.53** .36* - .26** -.69** .82**

Natural roads - nc nc nc .21** .36** .11** .31** - nc nc nc

Note: No. of counts: 56 ** Correlation is significant at the 0.01 level (2-tailed) 
 Ci: Connectivity, GIi: Global Integration, LIi: Local Integration,              Chi: Choice
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3.1. Correlation Results - Motor Cycle 
Traffic Volume and Centrality Values

Significant correlations were found between 
dai ly motor cycle traf f ic volume and 
centrality values. Centrality values computed 
based on angular distance and topological 
distance revealed a highly signif icant 

correlation level than the same of the metric 
distance. The highest correlation is found 
with ‘road segments - topological distance - 
local integration’ (r = 0.64, p < .01) followed 
by ‘road segments - angular distant - local 
integration’ (r = 0.57, p < .01), and ‘natural 
roads - topological distance - connectivity’ 
(r = 0.42, p < .01). 

Fig. 2.
The Map Depicts the Spatial Distribution of ‘Road Segments - Topological Distance - Local Integration 
Centrality’ Values. The Highest Values are Indicated in Red Colour and the Lowest Values are Indicated 
in Blue Colour

Fig. 3.
The Map Depicts the Spatial Distribution of ‘Road Segments - Angular (Geo-Metric) Distance - Local 
Integration Centrality’ Values. The Highest Values are Indicated in Red Colour and the Lowest Values 
are Indicated in Blue Colour
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3.2. Correlation Results - Car Traffic 
Volume and Centrality Values

Centrality values which computed based 
on angular distance indicated a significant 
correlation level compare to topological 

distance and metric distance. The highest 
correlation is found with ‘road segments 
- angular distance - global integration’(r 
= 0.67, p < .01) followed by ‘natural roads 
- topological distance - connectivity’ (r = 
0.54, p < .01). 

Fig. 4.
The Map Depicts the Spatial Distribution of ‘Road Segments - Angular Distance (Geo-Metric) - Global 
Integration’ Centrality Values. The Highest Values are Indicated in Red Colour and the Lowest Values 
are Indicated in Blue Colour

Fig. 5.
The Map Depicts the Spatial Distribution of ‘Natural Roads - Topological - Connectivity’ Centrality 
Values. The Highest Values are Indicated in Red Colour and the Lowest Values are Indicated in Blue 
Colour
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3.3. Correlation Results - Three Wheelers 
Traffic Volume and Centrality Values

Three wheelers are the most popular taxi 
service in the study area for short distance 
(2-5km) trips. ‘Road segments -topological 
distance - local integration’ revealed a 
highly significant positive coefficient of 
correlation (r = 0.79, p < .01) while ‘road 
segments - angular distance - choice’ 
revealed a significant negative coefficient 
of correlation (r = -0.64, p < .01) compare 
to other. Similar kind of relationship (i.e. 
positive correlation with local integration 
and negative correlation with choice) was 
observed in road segments of both metric 

distance and topological distance though 
their coefficient of correlation values were 
comparatively low. 

3.4. Correlation Results - Bus Traffic 
Volume and Centrality Values

It is observed that ‘road segments - angular 
distance - choice’ (r = 0.78, p < .01) and ‘road 
segments - metric distance - choice’ (r = 0.72, 
p < .01) have higher coefficient of correlation 
values and significant positive correlation 
with ‘road segments - topological distance 
- local integration’ (r = 0.63, p < .01) and 
‘road segments - angular distance - local 
integration’ (r = 0.55, p < .01).

Fig. 6.
The Map Depicts the Spatial Distribution of ‘Road Segments - Metric Distance - Choice’ Centrality 
Values. The Highest Values are Indicated in Red Colour and the Lowest Values are Indicated in Blue 
Colour
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Fig. 7.
The Map Depicts the Spatial Distribution of ‘Road Segments - Angular Distance (Geo-Metric) - 
Choice’ Centrality Values. The Highest Values are Indicated in Red Colour and the Lowest Values are 
Indicated in Blue Colour

3.5. Correlation Results - Heavy Vehicles 
Traffic Volume and Centrality Values

Heavy vehicles are pre dominantly used 
in transport activities related to Colombo 
sea port, industrial zones, manufacturing 
industries, whole-sale and commercial 
business in the study area. Centrality values 
computed based on angular distance and 
metric distance indicated a significant 
correlation level in comparison to topological 
distance. Future, ‘road segments - angular 
distance - choice’ (r = 0.82, p < .01) and 
‘road segments - metric distance - choice’ (r 
= 0.71, p < .01) revealed a highly significant 
positive coefficient of correlation while 
‘road segments - angular distance - local 
integration’ (r = -0.69, p < .01) and ‘road 
segments - topological distance - local 
integration’ (r = -0.53, p < .01) revealed a 
significant negative coefficient of correlation 
with heavy vehicle traffic volume.

3.6. Multiple Regression Results - Heavy 
Vehicles Traffic Volume and Centrality 
Values

Table 5 summarizes the results of best models 
selected (considering the R-square values) 
based on multiple regression analysis including 
information related to R-Square value of the 
model and partial correlations, part correlations 
and collinearity among independent variables. 
Partial correlation indicates the variance in 
the dependent variable (i.e. vehicular traffic 
by mode) explain by selected independent 
variable (i.e. any centrality value) after other 
independent variables have been partialled 
out whereas part correlation indicate the 
variance can be accounted only by a selected 
independent variable over dependent variable. 
Collinearity statistics values of all independent 
variables in each model indicated the no-
multicollinearity among each independent 
variable (Tolerance > 0.01, VIF < 10).
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Table 5
Summary Results of Multiple Regression Analysis

Ty
pe

 o
f 

V
eh

ic
le

Model R-Square
Sig. F

Change

Correlations Collinearity 
Statistics

Zero-
order Partial (Partial)2% Part (Part)2% Tolerance VIF

M
ot

or
 C

yc
le

(Constant)

0.627 0.000

             

RS_T_LI 0.415 0.694 48.2% 0.556 30.9% 0.599 1.669

NR_T_C 0.413 0.237 5.6% 0.144 2.1% 0.748 1.337

RS_A_GI 0.399 0.499 24.9% 0.370 13.7% 0.587 1.704

C
ar

(Constant)

0.726 0.000

             

RS_T_LI 0.625 0.494 24.4% 0.372 13.8% 0.625 1.600

NR_T_C 0.467 0.212 4.5% 0.133 1.8% 0.724 1.381

RS_A_Ch 0.04 0.447 20.0% 0.341 11.6% 0.623 1.605

RS_A_GI 0.679 0.668 44.7% 0.494 24.4% 0.679 1.473

T
hr

ee
 W

he
el

er (Constant)

0.685 0.000

             

RS_T_LI 0.679 0.737 54.3% 0.524 27.5% 0.679 1.473

RS_A_Ch 0.071 -0.483 23.3% -0.368 13.5% 0.610 1.639

RS_A_GI 0.513 0.326 10.6% 0.278 7.7% 0.601 1.664

B
us

(Constant)

0.794 0.000

             

RS_A_Ch 0.679 0.717 51.4% 0.494 24.4% 0.679 1.473

RS_T_LI 0.625 0.602 36.2% 0.372 13.8% 0.625 1.600

RS_A_LI 0.497 0.308 9.5% 0.147 2.2% 0.597 1.675

RS_A_GI 0.448 0.351 12.3% 0.299 8.9% 0.548 1.825

H
ea

vy
 V

eh
ic

le
s (Constant)

0.778 0.000

             

RS_A_Ch 0.729 0.704 49.6% 0.517 26.7% 0.585 1.709

RS_A_LI 0.215 -0.532 28.3% -0.432 18.7% 0.567 1.764

RS_A_GI 0.634 0.432 18.7% 0.369 13.6% 0.571 1.751

Note: RS: Road segments graph, NR: Natural roads graph, A: Angular distance, T: Topological distance, 
 C: Connectivity,  GI: Global Integration,  LI: Local Integration,  Ch: Choice

Results indicated that 63% (R-square 
0.627, p < .001) of motor cycle vehicular 
traffic can be explained by ‘road segments 
- topological distance - local integration’ 
(RS_T_LI), ‘natural roads - topological 

distance - connectivity’ (NR_T_C) and 
‘road segments - angular distance - global 
integration’ (RS_A_GI) centrality values. 
Further, 48.2% (Partial correlation = 0.694) 
of the variance in the motor cycle vehicular 
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traffic is influence by RS_T_LI while 24.9% 
(Partial correlation = 0.499) by RS_A_GI 
and 5.6% (Partial correlation = 0.237) by 
NR_T_C.

In related to car vehicular traffic, the multiple 
regression model with four predictors (i.e. 
‘road segments - topological distance - local 
integration’, ‘natural roads - topological 
distance - connectivity’, ‘road segments - 
angular distance - choice’, ‘road segments 
- angular distance - global integration’ 
produced 0.726 (p < .001) of R-square value. 
Future partial correlation values indicated 
that ‘road segments - angular distance - 
global integration’ has the highest influence 
(44.7%) while ‘road segments - topological 
distance - local integration’ (24.4%) and 
‘road segments - angular distance - choice’ 
(20.0%) recorded more than 20% influence 
over car vehicular traffic. 

‘Road segments - topolog ica l - loca l 
integration’ (RS_T_LI), ‘road segments 
- angular distance - choice’ (RS_A_Ch) 
and ‘road segments - angular distance - 
global integration’ (RS_A_GI) predictors 
recorded 0.685 (p < .001) of R-square value 
for three wheeler vehicular traffic. RS_T_LI 
explained 54.3% of variance in the three 
wheeler vehicular traffic while RS_A_Ch 
explained 23.3% and RS_A_GI explained 
10.6% variance in the three wheeler vehicular 
traffic. Further results indicated that strong 
negative relationship between RS_A_Ch 
and three wheeler vehicular traffic.

The multiple regression model of the bus 
vehicular traf f ic recorded the highest 
R-square (R 2 = 0.794, p < .001) value 
compare to other four modes. ‘Road 
segments - angular distance - choice’ 
(51.4%) and ‘road segments - topological 
- local integration’ (36.2%) recorded the 

very significant influence on bus vehicular 
traffic compare to ‘road segments - angular 
distance - global integration’ (12.3%) and 
‘road segments - angular distance - local 
integration’ (9.5%).

Last model recorded 78% (R-squa re 
0.778, p < .001) predictability between 
centrality values and heavy vehicular traffic. 
Accordingly, Road segments - angular 
distance - choice’ (RS_A_Ch) explains 
nearly 50% of heavy vehicle traffic while 
28.3% by ‘road segments - angular distance 
- local integration’ (RS_A_LI ) and 18.7% 
by ‘road segments - angular distance - global 
integration’ RS_A_GI explains of heavy 
vehicle traffic.

4. Discussions and Conclusions

The findings of this study on one hand 
sustain some of the augments put forward 
by previous studies and on other hand 
contribute newly on studies related to 
vehicular traffic and centrality measures. 
Hillier and Iida (2005) as well as Turner 
(2001) have found that human beings 
perceive the space mostly from geometrical 
distance (topological and angular distance) 
rather than metric distance. The results 
of this study too revealed a similar kind 
relationship, yet, further to this we found 
that angular distance is more powerful 
in global level (i.e. global integration and 
choice) whereas topological distance is more 
powerful in local level (i.e. local integration 
and connectivity). 

Previous studies (Puzis et al., 2013; Galafassi 
and Bazzan, 2014) argued that, ‘choice’ which 
is computed based on geo-metric analysis 
method significantly influence in predicting 
traffic volume and ‘betweenness’ (similar 
to choice) should form a better model of 
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movement data than closeness (similar to 
integration) centrality parameter (Hillier 
and Iida, 2005). However, this study found 
that it is more appropriate to consider the 
multiple influences from multiple centrality 
parameters rather being confined to a 
single best parameter and influence of each 
parameter varies based on type of vehicles 
as follows;

• Local integration (positive relationship 
and level inf luence aggregately 48% 
and individual 31%); the level that 
road segment is located near (in terms 
of topological distance) to the road 
segments in the surrounding area, global 
integration (positive relationship and 
level inf luence aggregately 25% and 
individual 14%); the level that road 
segment is located near (in terms of 
angular distance) to the road segments 
in the region, and connectivity (positive 
relat ionsh ip a nd level i n f luence 
aggregately 6% and individual 2%); the 
level that road is directly connected to 
the other roads in the region are key 
centrality parameters in relations to 
moto cycle vehicular traffic.

• Global integration (positive relationship 
and level influence aggregately 45% and 
individual 25%); the level that road 
segment is located near (in terms of 
angular distance) to the road segments 
in the region, local integration (positive 
relat ionsh ip a nd level i n f luence 
aggregately 25% and individual 14%); 
the level that road segment is located 
near (in terms of topological distance) 
to the road segments in the surrounding 
area; choice (positive relationship 
and level inf luence aggregately 20% 
and individual 12%); the level that 
road segment is located central (or 

intermediary) to the shortest paths (in 
terms of angular distance distance) 
which links the road segments in the 
region and connectiv ity (posit ive 
relat ionsh ip a nd level i n f luence 
aggregately 5% and individual 2%) ; 
the level that road is directly connected 
to the other roads in the region are key 
centrality parameters in relations to car 
vehicular traffic.

• Local integration (positive relationship 
and level inf luence aggregately 54% 
and individual 28%); the level that 
road segment is located near (in 
terms of topological distance) to the 
road segments in the surrounding 
area, choice (negative relationship 
and level inf luence aggregately 24% 
and individual 14%); the level that 
road segment is located central (or 
intermediary) to the shortest paths (in 
terms of angular distance) which links 
the road segments in the region and 
global integration (positive relationship 
and level inf luence aggregately 11% 
and indiv idual 8%); the level that 
road segment is located near (in 
terms of angular distance) to the road 
segments in the region are key centrality 
parameters in relations to three wheeler 
vehicular traffic.

• Choice (positive relationship and level 
influence aggregately 51% and individual 
24%); the level that road segment is 
located central (or intermediary) to 
the shortest paths (in terms of angular 
distance) which links the road segments 
in the region, local integration (positive 
relat ionsh ip a nd level i n f luence 
aggregately 36% and individual 14%); 
the level that road segment is located 
near (in terms of topological distance) 
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to the road segments in the surrounding 
a rea, loca l i nteg rat ion (posit ive 
relat ionsh ip a nd level i n f luence 
aggregately 10% and individual 2%); 
the level that road segment is located 
near (in terms of angular distance) to 
the road segments in the surrounding 
area and global integration (positive 
relat ionsh ip a nd level i n f luence 
aggregately 12% and individual 9%); 
the level that road segment is located 
near (in terms of angular distance) to 
the road segments in the region are key 
centrality parameters in relations to bus 
vehicular traffic.

• Choice (positive relationship and 
level i n f luence agg regately 50% 
and individual 27%); the level that 
road segment is located central (or 
intermediary) to the shortest paths 
(in terms of angular distance) which 
links the road segments in the region, 
global integration (positive relationship 
and level inf luence aggregately 19% 
and individual 14%); the level that 
road segment is located near (in 
terms of angular distance) to the road 
segments in the region and Local 
integration (negative relationship 
and level inf luence aggregately 28% 
and individual 19%); the level that 
road segment is located near (in terms 
of topological distance) to the road 
segments in the surrounding area are 
key centrality parameters in relations 
to heavy vehicular traffic.

With those findings, this study suggests 
that the inf luence of network geometry 
on vehicular traffic could provide a way to 
enrich traffic and transport models as well 
as guide transport engineers and planners 

in justifying their planning decisions in 
formulating transportation strategies, plan 
and policies much more comprehensively. 
Future studies can further contribute to this 
through incorporating the track information 
(including information related to origin, 
destination, route etc.) of vehicle users. 
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