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Abstract: This paper presents a path-based traffic assignment algorithm for solving the static 
deterministic user equilibrium traffic assignment problem. It uses the concepts of the path 
shift-propensity factor and the sensitivity of path costs with respect to path flows in the flow 
update process, and is labeled as the slope-based path shift-propensity algorithm (SPSA). 
It seeks to enable faster convergence, incorporates behavioral realism in the flow update 
process, and maintains simplicity of execution for easy deployment in practice. The behavioral 
rationale behind the proposed algorithm is explained. The mathematical exposition of the 
algorithm and its proof of convergence are articulated. Numerical experiments are conducted 
using test networks to benchmark the performance of SPSA. The computational performance 
of the SPSA is compared with those of two versions of the recently developed path-based 
algorithm labeled slope-based multipath algorithm (SMPA), the widely-used Frank-Wolfe 
(F-W) algorithm, and a variant of the F-W algorithm labeled the social pressure algorithm 
(SPA). They illustrate that the rate of convergence of the SPSA is very close to that of the 
SMPA and significantly better than those of the F-W algorithm and the SPA. One version of 
the SMPA performs better than the SPSA in terms of convergence, though the latter is easier 
to implement and hence a potential substitute for SMPA in practice. Further, the results 
vindicate the notion that the SPSA is a feasible deployment option under the computational 
capabilities available today.
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1. Introduction

The traffic assignment problem (TAP) 
has been extensively studied for over 
five decades, and many approaches and 
algorithms have been developed to solve 
it and its variants. Due to its relevance 
to practice, the most commonly solved 
problem in this context is the stat ic 
deterministic user equilibrium problem, 

labeled UETAP hereafter. It assumes that 
the travel demand is fixed and all network 
users perceive the travel times identically. 
In addition, due to the absence of a time 
dimension, it assumes that a path f low 
is simultaneously present on all links of 
that path. These assumptions, although 
seemingly restrictive in nature, are widely 
accepted for predicting equilibrium flows 
for long-term planning purposes.
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The UETAP can be formulated as a convex 
optimization problem with a non-linear 
objective function and a set of l inear 
constraints (Beckmann et al., 1956). This 
formulation yields a unique solution in terms 
of link f lows under the assumption that the 
link performance functions are separable, 
continuous and strictly monotonically 
increasing. However, while l ink f lows 
are unique, path f lows are non-unique as 
multiple solutions in terms of path f lows 
can represent the same link f lows. This 
non-uniqueness is an inherent property of 
all networks having the number of possible 
paths larger than the sum of the number of 
links and origin-destination (O-D) pairs (Lu 
and Nie, 2010). There have been some recent 
efforts to uniquely obtain the path f lows 
under some additional conditions. One such 
condition is based on the principle of entropy 
maximization (Rossi et al., 1989; Bar-Gera, 
2010), though the authors themselves have 
questioned the realism of these approaches 
relative to real-world traveler behavior. 
Hence, the need for real-world reliability 
of path-based solutions entails developing 
models that can more realistically represent 
the equilibration process. In addition to 
this, faster and smoother convergence and 
simplicity of execution are other desirable 
properties for the applicability of a method 
in practice. In practice, the iterative UETAP 
solution procedure is typically terminated, 
though not justifiably, at an arbitrary point 
due to computational time constraints. If the 
iterations in the solution procedure illustrate 
significant oscillations, issues of confidence 
in the solution obtained arise under arbitrary 
termination. This issue can be circumvented 
through approaches that ensure smoother 
convergence.

Kumar and Peeta (2010) developed a 
path-based algorithm labeled the slope-

based multi-path algorithm (SMPA) for 
the UETAP, aimed at achieving smoother 
and faster convergence. SMPA uses the 
sensitivity of the path cost with respect to 
f low in the form of the slopes of the path 
cost functions, avoids the line search by 
using a constant value of scaling factor and 
updates the f lows of paths between an O-D 
pair simultaneously to achieve smoother and 
faster convergence. However, a practical issue 
is that its execution requires the calibration 
of two parameters which requires multiple 
runs of the algorithm. These parameters have 
no upper bound and the performance of the 
SMPA is very sensitive to these parameters. 
Hence, the SMPA performance depends on 
the precision in calibrating the optimal values 
of parameters. In addition, it is relatively 
complex to implement compared to the well-
known Frank-Wolfe (F-W) algorithm. This 
motivates the current study which seeks to 
develop a solution algorithm for the UETAP 
that inherits the merits of the SMPA, tends 
to robustly incorporate real-world traveler 
behavior in the f low update process, and 
maintains the simplicity of execution for 
practice.

The UETAP solution algorithm proposed 
in this study is labeled as slope-based 
path shift-propensity algorithm (SPSA). 
The SPSA also draws on insights from the 
social pressure algorithm (SPA) proposed 
by Kupiszewska and Van V liet (1998) 
that uses the concept of social pressure 
to modify the move direction of the F-W 
algorithm to more realistically represent the 
f low update process for the UETAP while 
maintaining the simplicity of execution 
for practice. This concept has a behavioral 
interpretation: that drivers traveling on 
relatively expensive paths are more strongly 
inclined to shift paths compared to those 
traveling on paths with travel times closer 
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to minimum path costs. However, there are 
two potential conceptual gaps related to this 
algorithm, which when addressed can lead to 
further realism in the f low update process, 
representing another key motivation for the 
current study. First, the SPA implies that 
drivers from all costlier paths will shift to 
a single path with minimum cost though 
other potentially attractive paths exist with 
costs close to or even equal to the minimum 
cost. Second, the move direction of the SPA 
ignores the sensitivity of the path cost to the 
path flow. This implies that drivers will shift 
to a minimum cost path from multiple paths 
irrespective of the increase in congestion 
due to these shifts. Both these issues are 
problematic from a realism viewpoint. The 
SPSA inherits insights from both the SPA 
and the SMPA, and seeks to bridge the 
conceptual gaps in the SPA by enabling flow 
shifts to multiple potentially attractive paths. 
It also utilizes the sensitivity of path costs in 
the form of the slopes of the cost functions 
to add more behavioral realism, and also 
achieve smoother and faster convergence. 
The mathematical derivations of the move 
direction for the SPSA, and its proof of 
convergence, are provided in section 4 of 
this paper. 

The remainder of the paper is organized 
as fol lows. The section 2 summarizes 
the related l iterature in this domain. 
Then, the formulation of the UETA P 
problem is presented in section 3. Section 
4 presents the mathematical derivation 
of the SPSA algorithm along with its 
proof of convergence. Then, the results of 
computational experiments are illustrated 
in section 5, that compare the relative 
performance of the SPSA with SMPA, SPA 
and Frank-Wolfe algorithm. Finally, some 
concluding comments are presented in 
section 6.

2. Literature Review

The idea of equilibrium in traffic f lows 
originated in 1924 when economist Frank 
Knight proposed “Social Cost,” to explain 
how the truck operators w i l l tend to 
distribute themselves between various roads 
if they are tolled (Knight, 1924). This idea 
was formalized in the form of two principles 
by John Wardrop; they form the basis for 
analyzing traffic equilibrium and are labeled 
as Wardrop’s first and second principles 
(Wardrop, 1952). Beckmann et al. (1956) 
proposed the UETAP as an optimization 
problem, which is known as Beckmann’s 
transformation. In the same year, the linear 
approximation method was devised by Frank 
and Wolfe to solve the quadratic problem, 
which is known as the Frank-Wolfe (F-
W) algorithm. This method was adopted 
to solve the network equilibrium problem 
by Bruynooghe et al. (1969), and later by 
LeBlanc (1973) and LeBlanc et al. (1975) and 
Nguyen (1974). Florian and Nguyen (1976) 
and Dow and Van Vliet (1979) provided 
the validation studies for this method, and 
it was adopted as the technique for solving 
UETAP in related commercially developed 
software. Since then, the F-W algorithm 
has been the most commonly used method, 
which replaced the heuristic methods (Sheffi, 
1985) that were previously used in practice.

The F-W algorithm has some advantages 
for practical implementation. It has a simple 
structure which is easy to implement. In 
addition, its storage memory requirements 
a re low, ma k i ng it  comput at iona l ly 
compatible with computers of older vintage. 
It also has a good convergence rate in initial 
iterations, but starts tailing especially as 
it moves closer to convergence. The main 
reason for its poor performance is attributed 
to its search direction which becomes 
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perpendicular to the direction of maximum 
descent near convergence. This deficiency 
has lead to many variants of F-W algorithm. 
Most of these have attempted to modify the 
step size or search direction. Weintraub et al. 
(1985) suggested the use of a modified step 
size which is obtained by multiplying the 
optimal step size by some factor to reduce 
the zigzagging effect in the F-W algorithm. 
Other such examples include the methods 
suggested by Wolfe (1970) and Meyer (1974). 
Luenberger (1973) suggested an improved 
F-W algorithm by using the parallel tangent 
(PARTAN) direction which was introduced 
in the TAP by LeBlanc et al. (1985) and 
Florian et al. (1987). Fukushima (1984) 
suggested a method that uses the convex 
combination of linear program solutions 
from previous iterations to generate a new 
search direction. Then, the directional 
derivatives of this new search direction 
and the F-W search direction are computed, 
and the search direction with the lower 
directional derivative among these two is 
used to generate the next updated solution. 
Lee and Nie (2001) proposed a method 
similar to Fukushima, but use a heuristic 
to determine parameters for modifying the 
search direction based on the congestion 
levels in the network. Most of these methods 
operate in the space of link flows and benefit 
from the basic structure of the F-W algorithm 
which requires lesser memory usage.

O ver t i me, t he need for pat h-based 
solutions was felt by planners, and led 
to the re-visit of the path-based method 
which was f irst proposed by Dafermos 
(1968) and Dafermos and Sparrow (1969). 
This method equilibrates a single origin-
destination (O-D) pair at a time, by shifting 
f lows from the longest path to the shortest 
path at each move. The step size for each 
move is obtained through a line search 

technique, and requires enumerating 
paths. This makes it expensive in terms 
of the computational time and memory 
requirements, and was hence not used due 
to the limited computing capabilities at that 
time. Later, evolving computing advances 
and enhanced capabilities encouraged 
researchers to develop path-based methods, 
most of which are Newton-type methods 
and use the second-order derivative of the 
objective function. One such method is 
the disaggregate simplicial decomposition 
(DSD) method proposed by Larson and 
Patriksson (1992) which iterates between 
a master problem and a sub-problem. In DSD, 
in the initial few iterations, the first-order 
reduced gradient method is employed to 
obtain a near-optimal solution, and then a 
second-order diagonalized Newton method 
is used to determine a highly accurate 
solution. Jayakrishnan et al. (1994) proposed 
a gradient projection (GP) algorithm to 
solve the UETAP based on the Goldstein-
Levitin-Polyak gradient projection (GP) 
algorithm formulated by Bertsekas (1976) 
and Bertsekas and Gallager (1987). Bar-
Gera (1999) proposed an approach which has 
solution variables in terms of origin-based 
flow proportions, and can be used to find the 
path f lows. It makes use of an origin-based 
bush structure to eliminate cycles and is 
conceptually similar to the destination-based 
algorithm of Gallager (1977) proposed for 
telecommunication networks. Dial (2006) 
proposed a path-based algorithm labeled 
algorithm B that also makes use of a bush-
based acyclic sub-network and results in a 
highly efficient solution. Algorithm B uses 
the slopes of path costs to shift f low from 
the longest path to the shortest path at each 
move, equilibrates one O-D pair at a time in a 
sequential manner, and does not require the 
line search to find the step size. Florian et al. 
(2009) developed an algorithm based on the 
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projected gradient method of Rosen (1960) 
which also provides a solution in terms of 
path f lows and equilibrates one O-D pair at 
a time sequentially. This algorithm uses the 
average cost for finding the search direction 
and does not require the second derivative 
information. Recently, Kumar and Peeta 
(2010) developed an algorithm labeled the 
slope-based multi-path algorithm (SMPA) 
that uses the slope of the cost function 
efficiently to shift f lows from the set of 
costlier paths to the set of cheaper paths 
simultaneously and seeks to move path costs 
towards the average cost for an O-D pair at 
each iteration to achieve faster convergence.

There is another type of algorithm which 
is based on modifying the search direction 
of the F-W algorithm but operates in the 
space of path f lows. The social pressure 
algorithm developed by Kupiszewska and 
Van Vliet (1998) lies under this category. It 
retains the simple structure of F-W algorithm 
but improves the rate of convergence by 
using a social pressure factor. The concept 
of social pressure used in this algorithm 
has behavioral consistency with the likely 
rationale used by network users to seek better 
paths. It states that the number of users who 
shift from a costlier path is proportional to 
the difference of the cost on that path from 
that of the minimum cost path. The SPSA 
algorithm proposed in this paper leverages 
this concept and insights from the SMPA 
algorithm in deriving its search direction 
and endeavors to overcome the demerits 
of both of them. The key difference is that 
unlike SMPA it does not require calibration 
of multiple parameters and unlike SPA it 
entails flow shifts to multiple attractive paths 
and uses the sensitivities of the path costs 
with respect to f low while shifting f lows; 

this enhances behavioral realism in the flow 
update process as explained later in sections 
4.1 and 4.4.

3. Problem Formulation and Notation

Let the network of interest be represented 
by a set of nodes N, and a set of links A. Let 
R and S, respectively, be the set of origin and 
destination nodes which may not be mutually 
exclusive. The set of feasible paths that 
connect an O-D pair r-s is denoted as Krs and 
the O-D demand as qrs. Let xa and ca represent 
the f low and cost on link a respectively, and 
fk

rs and ck
rs represent the flow and cost on path 

k of O-D pair r-s, respectively. The cost of 
traveling on a path is equal to the sum of the 
costs on the links of that path, where the link 
cost is a function ca(xa) of the f low on that 
link. The UETAP can be represented as an 
optimization problem using the well-known 
Beckmann’s transformation (Beckmann et 
al., 1956) which has a minimization objective 
function:

0
min  ( ) ( )ax

a
a A

Z x c w dw
∈

=∑∫ 	  (1)

subject to constraints on flow conservation, 
non-negativity, and link-path incidence 
definition, as follows:

,   rs
k rs

k
f q rs= ∀∑ 	  (1a)

0,   ,rs
kf k rs≥ ∀ ∀ 	 (1b)

, , if link  lies on path , 0 otherwise,  1 rs rs rs
a k a k a k

r s k
a kx f δ δ= =∑∑∑

	  
(1c)

if link a lies on path k, 0 otherwise.
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In addition to the basic assumptions of user 
equilibrium which assumes familiarity of 
all network users with the network and 
their homogenous rational behavior, the 
equivalency of this formulation to the 
static UE problem and the uniqueness of 
the solution in terms of link f lows requires 
following assumptions: (i) O-D demand 
is constant and non-negative for all O-D 
pairs, (ii) link costs are positive and strictly 
monotonically increasing, and continuously 
differentiable functions of flow, and (iii) the 
link cost depends only on the f low on that 
link and does not depend on the f low on 
other links. Under these assumptions, the 
Hessian matrix of the objective function 
is a diagonal matrix with positive diagonal 
elements, and is positive definite. Then, 
the solution of above problem in terms of 
link f lows is unique but not so in terms of 
path f lows. User familiarity with a network 
implies that the network users are familiar 
with the network topology and travel times. 
The network familiarity in this study also 
implies that users know the sensitivity of 
path cost with respect to f low based on 
repeated travel experiences.

4. SPSA Algorithm Development

This section reviews the flow update process 
of F-W algorithm and SPA along with their 
limitations and conceptual gaps and explains 
how those conceptual gaps are bridged in 
SPSA. The path-based UETAP problem 
formulation is presented to represent the 
equilibration process of SPSA. Then the 
derivation of the mathematical expression 
for the move direction of SPSA along with 
the proof of convergence and implementation 
details is presented.

4.1. Conceptual Basis for the SPSA

The optimization problem represented by 
Eq. (1) in the previous section is solved using 
an iterative f low update process, where the 
move direction at each iteration seeks to 
decrease the value of the objective function. 
The iterative process terminates when the 
convergence criterion is met. In the F-W 
algorithm, this link-based f low update 
process at any iteration n is (Sheffi, 1985):

1 ( )n n n n
a a n a ax x y xλ+ = + − 	  (2)

where, 1n
ax + is the updated link flow on link a, 

which is the combination of present link flow 
n
ax  and the auxiliary link f low n

ay obtained 
by assigning the entire demand for each O-D 
pair to its current shortest path (that is, an 
all-or-nothing (AON) assignment). nλ  is 
the step size which lies between 0 and 1 and 
is obtained through a line search procedure 
that minimizes the value of Z(x). Translating 
this in terms of a path-based approach, the 
f low update process for the F-W algorithm 
can be represented as (Kupiszewska and Van 
Vliet, 1998):

, *
, 1

, *

(1 )  
(1 )  

rs n
rs n n k

k rs n
n k n rs

f if k k
f

f q if k k
λ

λ λ
+  − ≠
= 

− + =
	 (3)

where, *k is shortest path, and , 1rs n
kf

+ is 
the new f low for path k between the O-D 
pair r-s for iteration n, which is obtained by 
combining the present f low ,rs n

kf and the 
AON flow. In the linked based approach, the 
flow update in the F-W algorithm takes place 
using Eq. (2) which requires just the shortest 
paths at the current iteration and does not 
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require path information from previous 
iterations. Hence, the memory requirement 
for this algorithm is low, representing an 
advantage over path-based algorithms in the 
past when computers were constrained by 
their lower memory. But this advantage also 
implied several limitations to the algorithm. 
As the path information is lost across 
iterations, the (link-based) results of the 
assignment cannot be used for applications 
which require path information. By using 
insights from Eq. (3), the flow update process 
of the F-W algorithm implies that the f low 
is transferred from non-shortest paths to 
the shortest path in each iteration. But this 
f low transfer is proportional to step size nλ
, which is uniform for all the non-shortest 
paths and also for all the O-D pairs. This 
makes the F-W algorithm insensitive to the 
cost difference between paths as it shifts a 
uniform proportion of f low using a single 
value of step size nλ . This is problematic 
from a behavioral realism viewpoint, as the 
fraction of drivers who will shift from a costly 
path to cheaper path will vary with the path, 
and will not necessarily be constant across all 
paths and all O-D pairs. Drivers using more 
expensive paths compared to the minimum 
cost path will be more inclined to shift their 
paths than less expensive paths. Accordingly, 
larger fractions of drivers traveling on more 
expensive paths will shift paths than on 
less expensive paths. Hence, in order to 
represent this behavioral realism in the flow 
update process, paths which have lesser cost 
difference from the minimum cost path will 
require a smaller value of nλ  and paths which 
have larger cost difference will require a 
larger value of nλ . From a computational 
viewpoint as well, using a uniform step size 
drives the paths that are near minimum cost 
beyond it by shifting more than required 
flow, while at the same time this step size may 

be insufficient for paths far from minimum 
cost. Consequently, f low transfer starts 
oscillating between the paths of an O-D pair, 
especially near convergence, leading to the 
poor performance of the F-W algorithm. The 
social pressure algorithm (Kupiszewska and 
Van Vliet, 1998) was devised to overcome 
this drawback.

The social pressure concept is based on 
the idea that drivers traveling on relatively 
expensive paths are more strongly inclined 
to shift paths than those with travel times 
closer to the minimum cost paths. The social 
pressure factor (Kupiszewska and Van Vliet, 
1998) for a path is defined as the difference 
of cost of the path from the minimum cost 
for the O-D pair. In this paper, it is termed 
as the “path shift-propensity factor” to link it 
to the real-world meaning, mathematically:

min
rs rs rs
k kc cρ = − 	  (4)

where, rs
kρ is the path shift-propensity factor 

for path k, rs
kc is the cost of path k and min

rsc
is cost of the shortest path between an O-D 
pair r-s. In the social pressure algorithm, 
the step size in the f low update process is 
weighted by the path shift-propensity factor:

, *

, 1
, , *

(1 )  
 

rs rs n
n k krs n

rs n rs rs nk
k n l l

l k

f if k k
f f f if k k

λ ρ
λ ρ

+

≠

 − ≠=  + =


∑ 	
(5)

where, nλ is the step size whose optimum 
value minimizes the objective function 
Z . nλ is not bounded between 0 and 1, 
and is constrained by the limits 0 and

max 1 / max( )rs
kλ ρ= . In this method, the 

rate at which f lows are transferred to the 
cheapest path is not a constant factor of path 
f lows, but a variable rate proportional to 
“path shift-propensity factor” as illustrated 
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by Eq. (5). This enables the social pressure 
algorithm to have a more stable as well 
as faster convergence compared to the 
traditional F-W algorithm. However, as 
mentioned earlier in the paper, there are 
two important deficiencies in this algorithm. 
First, it transfers f low from all expensive 
paths to just one shortest path though 
other paths may exist with cost equal to 
or very close to the shortest path. This is 
problematic from both behavioral realism 
and computational viewpoints. In reality, 
it is unlikely that drivers will shift from all 
expensive paths to just one path, and are 
more likely to shift to various potentially 
attractive paths which have cost equal to 
or close to minimum cost for the O-D pair. 
From a computational perspective, shifting 
f lows from multiple paths to a single path 
may over-congest that path making it an 
expensive path in the next iteration. Second, 
it does not take into account the sensitivity of 
path costs with respect to f low. Kumar and 
Peeta (2010) have shown that the efficient 
use of the slopes of the cost function and the 
transfer of f lows from multiple expensive 
paths to multiple cheaper paths in the SMPA 
algorithm lead to faster convergence. The 

SPSA is derived by inheriting insights from 
the SMPA and social pressure algorithms in 
the f low update process.

4.2. Representation of UETAP from the 
Perspective of Path Flows

T he S PS A i s  ba sed on G au s s - S e ide l 
decomposition techniques where O-D pairs 
are equilibrated one at time in a sequential 
order. Let us consider an intermediate stage of 
the equilibration process at iteration n where 
an O-D pair r-s is being equilibrated. As the 
UE conditions are not satisfied, paths with 
non-zero f lows will not have equal cost for an 
O-D pair. Let Krs be the set of feasible paths 
between the O-D pair r-s which has unequal 
cost. Now, using the insights from the SMPA 
algorithm, the set of feasible paths is divided 
into two subsets: the set of costlier paths and 
the set of cheaper paths. Then, the f low is 
transferred from the set of costlier paths to the 
set of cheaper paths. This facilitates the f low 
shift from expensive paths to multiple potential 
paths. To enable this in the SPSA, the objective 
function during the equilibration process for 
an O-D pair r-s is decomposed into three parts:

( ) 

)
0 0 0

\(\
( ) ( ) ( ) ( )

rs rs rs rs rs

a a a a a ax x x x x x

a a a
a P P a P a A P P

Z x c w dw c w dw c w dw
−∆ + ∆ −∆

∈ ∈ ∈
+ += ∑ ∑ ∑∫ ∫ ∫



  (6)

where: 
rsP = set of cheaper paths, comprising of 

paths having cost less than or equal to the 
threshold value rsπ for the O-D pair r-s, rsP
= set of costlier paths, comprising of paths 
having cost greater than the threshold value 

rsπ  for the O-D pair r-s, ax∆ = change in flow 
for link a due to f low update of paths in the 
costlier set,  ax∆ = change in f low for link a 
due to flow update of paths in the cheaper set 

The first part in Eq. (6) considers links which 
belong to the costlier paths but does not to 
the cheaper paths. The second part considers 
the l inks which belong to the cheaper 
paths and third part in Eq. (6) considers 
links which do not belong to any path in 
the feasible set for the O-D pair r-s being 
equilibrated. Once the f low update process 
for one O-D pair is completed, the next 
O-D pair is brought into the equilibration 
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process. An iteration is completed when all 
O-D pairs are equilibrated once. This process 
is repeated until the convergence criterion 
is satisfied.

Although above mentioned flow shifts from 
multiple costlier paths to multiple cheaper 
paths in SPSA is based on the insights from 
SMPA, there lies a conceptual difference 
between them. While in SMPA the threshold 
value rsπ that demarcates the boundary 
between costlier and cheaper paths is equal 
to average cost of the O-D pair, in SPSA it 
is obtained using the proximity parameter 
δ as below:

min
max( ),   0 1rs rs rs

k
cπ δ ρ δ= + ≤ <

T he prox i m it y pa ra meter δ  sets t he 
indif ference band near minimum cost 
path by specifying the threshold value 

rsπ between the maximum cost path and 
minimum cost path. While the value of rsπ
changes from one O-D pair to another and 
with the iterations as the value of maximum 
path shift-propensity factor changes, the 
value of δ remains constant throughout the 
execution of the algorithm. The value of δ 
needs to be calibrated before using SPSA for 
better performance which was found to be 
0.15 and 0.2 for the test networks as shown 
in section 4.6. In reality, drivers are likely 
to shift from expensive paths to the paths 
having cost closer to minimum cost paths 
and not to all paths having cost less than the 
average cost. Hence SPSA represents better 
behavioral realism in its flow update process 
compared to SMPA. The superscript for O-D 
pair r-s is dropped hereafter for simplicity 
of notation as we focus on an O-D pair r-s.

4.3. Derivation of the Move Direction of 
SPSA

As explained in section 4.2, the set of feasible 
paths is divided into two subsets, P (set 
of cheaper paths) and P (set of costlier 
paths). The f lows are shifted from the set 
of costlier paths to the set of cheaper paths 
in proportion to the path shift-propensity 
factor:

1 (1 ) ,n n n
nk k kf f k P Kλ ρ+ = − ∀ ∈ ∈ 	 (7)

where,

1n
kf
+ = new flow on path k belonging to the 

set P at iteration n

n
kf = current f low on path k belonging to 

the set P at iteration n

n
kρ = path shift-propensity factor for path k 

belonging to the set P at iteration n

From Eq. (7), we obtain:

1 ( )n n n n
k k k n k kf f f fλ ρ+∆ = − = 	  (8)

The superscripts n and n+1 are dropped 
hereafter for simplicity of notation as we 
focus on an O-D pair r-s at iteration n. 
Rewriting Eq. (8) we obtain:

( )k k kf fλρ∆ = 	  (8a)

The cheaper path set P  will consist of paths 
having costs close to the minimum cost 
path assuming that the value of proximity 
parameter (δ) is small. As f lows are added 
to paths in this set their costs will increase. 
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Assuming that change in path flows are small 
relative to path f low, new path costs can be 
expressed as the function of new flows using 
the first order Taylor expansion:

       ( ) ( ) ( ). ,    l l l l l l lc f f c f s f f l P K+ ∆ = + ∆ ∀ ∈ ∈ 	 (9)

where,
 lc = cost of path l belonging to the set P

 lf = flow of path l belonging to the set P
 ls = first derivative of the cost function of 

path l belonging to the set P

Flows are added to paths in the cheaper set 
such that the increases in the costs of all the 
paths in this set are equal so as to keep their 
costs close to each other. Let us assume that 
new path costs resulting from the new flows 
are higher than the old path costs by an equal 

amount c∆ . From Eq. (9), we obtain:

       ( ) ( ) ( ).l l l l l l lc c f f c f s f f∆ = + ∆ − = ∆ 	 (10)

Rewriting Eq. (10), we obtain:

 
  ( )l
l l

cf
s f
∆

= 	 (10a)

The value of ∆c remains constant over the 
paths in the cheaper set for an O-D pair. 
The behavioral interpretation of Eq. (10a) 
is that the higher the sensitivity of the travel 
cost of a cheaper path with respect to the 
congestion level, the lower is the proportion 
of network users shifting to that path from 
the costlier paths for the O-D pair. This is 
consistent with the assumption that the user 
familiarity with the network implies their 
familiarity with the sensitivity of the path 
costs with respect to the congestion level. 

To satisfy the flow conservation for the O-D 
pair, the sum of f low transferred from the 
various paths of set P should be equal to the 
sum of f lows being added to the paths set
P . Hence,

 k l
k P l P

f f
∈ ∈

∆ = ∆∑ ∑ 	  (11)

Using Eqs. (8a), (10a), and (11), we obtain:

  ( )k k
k P l P l l

cf
s f

λρ
∈ ∈

∆
=∑ ∑

  

1
( ) k k

l P k Pl l

c f
s f

λρ
∈ ∈

⇒ ∆ =∑ ∑

  

1
( )

k kk P

l P
l l

f
c

s f

λρ
∈

∈

⇒ ∆ = ∑
∑

Substituting the value of c∆ back into the 
Eq. (10a), we obtain:

 

  
  

1( )
( )

k kk P
l

l l l P
l l

f
f

s f
s f

λρ
∈

∈

∆ = ∑
∑

	  (12)

Hence, the move direction for the f low 
update process in the SPSA is:

 

  
  

( ) ,

,1( )
( )

k k k

k kk P
l

l l l P
l l

f f k P
f

f l P
s f

s f

λρ

λρ
∈

∈

 ∆ = ∀ ∈


∆ = ∀ ∈



∑
∑

	  (13)
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The flows of paths in the feasible set for each 
O-D pair are updated by using the following 
f low update mechanism in each iteration:

   

,                                       (A)
                                       (B)

k k

l l l

f f f k P
f f f l P
→ −∆ ∀ ∈
→ +∆ ∀ ∈   

,                                       (A)
                                       (B)

k k

l l l

f f f k P
f f f l P
→ −∆ ∀ ∈
→ +∆ ∀ ∈

4.4. The Logic of the Flow Update 
Mechanism of SPSA

The logic of the proposed f low update 
mechanism for the SPSA is presented in 
Fig. 1. To understand the concept, let us 
assume that the O-D pair which is being 
updated has six paths in the feasible set, 
labeled 1 to 6. The current positions of the 
paths on the f low-cost plot are shown as 
solid ellipses, and the dotted ellipses show 
their positions after the f low update. The 
path labeled 5 has the highest cost and path 
labeled 3 has the lowest cost. Hence, the 
maximum path shift-propensity factor for 
this O-D pair will be equal to the difference 
of costs of these two paths. Let δ be the 
predefined proximity parameter; then, the 
threshold limit (π) is equal to the sum of the 
cost on path labeled 3 and δ times the path 
shift-propensity factor of the path labeled 
5 as shown in Fig. 1. A path which has cost 
less than or equal to this threshold value π 
will fall into the cheaper set and rest of the 
paths in the feasible set will lie in the costlier 
set. In this example, the paths labeled 1, 2 
and 3 have costs lesser than the threshold 
value π and will form the cheaper path set, 
and the paths labeled 4, 5 and 6 have costs 
greater than π and will form the costlier path 
set. The f low is shifted from the costlier 
set of paths to the cheaper set. As per the 
proposed mechanism, the flow shift from a 
path in the costlier set is proportional to the 
current f low and the path shift-propensity 

factor of that path. In SPSA f lows are not 
added just to the path labeled 3 but to all the 
paths in the cheaper set that increases the 
costs of these paths by equal amount. This 
mechanism uses the sensitivity of path costs 
with respect to f low in the form of slopes 
of the cost functions to ensure that costs of 
the paths in the cheaper set do not increase 
substantially due to the flow update process. 
Herein lies the main difference of the SPSA 
from the social pressure algorithm. In the 
social pressure algorithm, f lows from all 
the paths will be added to just one path 
labeled 3 which has the minimum cost. 
Consequently, the resulting cost of this 
path will increase substantially, and in the 
next iteration flow update will require flow 
shift from this path to some other path. In 
the SPSA, the costs of all cheaper paths 
having cost close to the minimum O-D cost 
are elevated simultaneously. This decreases 
the oscillations of f lows between the paths 
and hence decreases the required number 
of iterations and enables SPSA to achieve 
smoother and faster convergence. Here it is 
also imperative to mention the difference 
between the f low update logic of SMPA 
and SPSA. In SMPA, threshold limit (π) is 
not defined by proximity parameter but it 
coincides with the average cost of the paths 
(cav) between the O-D pair. Accordingly, 
the path labeled 6 will fall in the cheaper 
set along with the paths labeled 1, 2 and 3. 
Hence in SMPA flow will be added to this 
path as opposed to the SPSA where f low is 
shifted from this path. Given the condition 
represented by Fig. 1, it is reasonable that 
the network users on costlier paths (paths 
labeled 4 and 5) are likely shift to paths 
labeled 1, 2 and 3 and not just to path 3. At 
the same time, they are less likely to shift 
to path 6. Hence, f low update mechanism 
of SPSA is more intuitive than both SPA 
and SMPA.
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Fig. 1.
Flow Update Mechanism of SPSA

4.5. Proof of Convergence for SPSA

In order to prove the convergence of SPSA, 
we need to verify three conditions: (i) the 
objective function and feasible space are 
convex, (ii) at each iteration after the f low 
update process, the new path f low vector 
remains in the feasible space, and (iii) the 
move direction of the SPSA is a descent 
direction.

Since the constraints represented by Eqs. 
(1a), (1b) and (1c) are linear, the feasible 
space of the solution vector is convex. The 
objective function (6) is the sum of the 
integrals of monotonically increasing and 
continuous functions. Hence the objective 
function is also convex. This verifies the first 
required condition for convergence.

In order to satisfy the second condition, new 
f low vector should always satisfy the set of 
constraints represented by Eqs. (1a), (1b) 
and (1c). In each iteration, new f low vector 
is obtained by updating the previous f low 
vector using the following relation:

1n n nf f dλ+
          = +

where,

[ ] 1nf +
= new or updated path f low vector 

at iteration n 

[ ]nf = old path f low vector at iteration n 

[ ]nd = move direction at iteration n
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The move direction of the SPSA is derived 
in such a way that it always satisfies the flow 
conservation constraints 1(a). As explained 
in the section 4.6, the bounds of step size 
are derived such that they satisfy the non-
negativity constraints 1(b). Also, the link-
path incidence definitional constraints (1c) 
are always utilized while updating the link 
flows. Hence, the new flow vector will always 
lie in the feasible space provided the f low 
vector at the initialization iteration is in 
the feasible space. Since the initialization 
is always done with path f low vector which 
in feasible space, hence new f low vector at 
each iteration after the f low update process 
will always lie in the feasible space. This 
verifies the second required condition for 
convergence.

At iteration n, when an O-D pair r-s is 
being equilibrated the move direction 
is the descent direction if the cosine of 
the angle between the gradient of the 
objective function and the move direction 
is negative. Mathematically, d is a descent 
direction if:

. 0Z d∇ <

The ith element of vector d is given as:

 

  
  

                         , if path  for the O-D pair         

  , if path  for the O-D pair          
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For the sake of computational convenience, 
and without the loss of generality, the 
elements of each vector d and Z∇ can 
be arranged such that f irst k elements 
correspond to the paths in the costlier set 
for the O-D pair r-s, the next l elements 
correspond to the paths in the cheaper set 
for the O-D pair r-s, and rest of the elements 

corresponds to paths which do not belong 
to the O-D pair r-s but belong to other O-D 
pairs and hence are not in the equilibration 
process for this O-D pair.

Hence, 
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The ith element of the gradient vector Z∇
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Hence,	 [ ]1  1  1k k l l iZ c c c c c c+ +∇ =   

and, [ ]

1

 1

1  1  1

 

1.

0

0

k

k

k k l l i

l

f

f
f

Z d c c c c c c
f

λ

+

+ +

 −∆
 
 
 −∆
 
∆ 
 ∇ =  
 ∆
 
 
 
 
  



   



  
1 1. 0k k l l

k P l P
Z d c f c f

λ λ∈ ∈

⇒∇ = − ∆ + ∆ +∑ ∑ 	  (14)

From Eq. (11), we have:

 k l
k P l P

f f
∈ ∈

∆ = ∆∑ ∑

 
1 1

k l
k P l P

f f
λ λ∈ ∈

⇒ ∆ = ∆∑ ∑ 	  (15)
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Since cost of any path in the costlier path 
set is greater than the cost of any path in 
the cheaper path set for the O-D pair r-s, the 
following inequality is always true:

 and  for the O-D pair -  ,   k l l P r sk Pc c ∀ ∈∀ ∈> 	  (16)

Using Eqs. (15) and (16), we obtain:

  
1 1

k k l l
k P l P

c f c f
λ λ∈ ∈

∆ > ∆∑ ∑

  
1 1 0k k l l

k P l P
c f c f

λ λ∈ ∈

⇒ − ∆ + ∆ <∑ ∑ 	  (17)

Next from Eqs. (14) and (17), we obtain:

. 0Z d∇ <

This verifies the third required condition 
that the move direction of the SPSA is a 
descent direction. Hence the convergence 
of the algorithm is proved.

4.6. Algorithm Implementation

The f low logic of the SPSA is illustrated 
in Fig. 2. The algorithm starts with AON 
assignment or a warm start using previously 
known approximate solution as initialization. 
Next it checks for convergence criteria; 
i f the initial solution does not satisf y 
the convergence criteria, then the SPSA 

f low update logic is initiated. The SPSA 
equilibrates one O-D pair at a time in a 
sequential manner. The sequential approach 
helps to achieve faster convergence but it 
introduces the order bias in the solution. 
This issue has been tackled partially by 
updating path sets simultaneously for all 
the O-D pairs before commencing the 
f low shifts (move) for the O-D pairs. The 
shortest paths are generated for all the O-D 
pairs then those paths are included in the 
feasible path set which are not present in 
this set. Then the first O-D pair is brought 
into equilibration process. First, the path 
shift-propensity factors and threshold 
parameter (π) are computed and then flows 
are updated according to the move direction 
of the SPSA. The costs and slopes of the link 
cost functions, and then those of the paths, 
are updated after each move. Once an O-D 
pair is equilibrated using SPSA flow update 
logic, the next O-D pair in the sequence 
is brought into the equilibration process. 
Once all the O-D pairs are equilibrated, 
the convergence criterion is checked. If it 
is satisfied, the algorithm is terminated, 
else the next iteration is initiated. The 
convergence criterion adopted in this paper 
is the normalized gap (Ngap) of 10-6. The 
Ngap is defined as:

min
rs rs rs rs
k k kr s k r s k

rs rs
k kr s k

c f c f
c f

−∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑
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Initialization 
( AON or warm start)

Transfer flow between
costlier and cheaper cost
paths using Equations
(13), (A) and (B)

Convergence
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Stop 

Go to the next O-D 
pair

Select the first 
O-D pair

Is current 
O-D pair the last 

O-D pair ? Yes 
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Yes 
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Update link flows, link
costs, cost function slopes,
and path costs

Save  path 
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and update path set for all O-D
pairs

Compute the path shift-
propensity factors and the
threshold parameter π

Inputs:
Link properties,
O-D demand, δ

Fig. 2.
The Implementation Flow Chart of SPSA Algorithm

In addition to the measure of convergence, 
two other aspects which are important 
from the implementation perspective are 
the step size λ and the proximity parameter 
δ. The value of λ is obtained using the line 
search procedure that minimizes the value 
of objective function Z. For finding the λ, 
the line search technique needs a bound 
for it. It is obtained by satisfying the non-
negativity constraints. As flows are added to 
the cheaper set of paths, the non-negativity 
constraints are not violated in the f low 
update process for them. For satisfying the 
non-negativity constraints in the flow update 
process for costlier set of paths, the following 
condition should be satisfied:

0k kf f−∆ ≥

	 0k k kf fλρ⇒ − ≥

	 (1 ) 0k kf λρ⇒ − ≥

	
1 ,    

k

k Pλ
ρ

⇒ ≤ ∀ ∈

	
1

max( )max
k

λ
ρ

⇒ =

	
10

max( )k

λ
ρ

⇒ ≤ ≤
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This implies that the minimum bound for 
the step size is zero, but its maximum bound 
depends on the path shift-propensity factor 
of the costliest path of the O-D pair and 
varies with O-D pairs, and from one iteration 
to the next. Hence, it is computed as the part 
of f low update process.

The proximity parameter δ decides the 
upper bound near the minimum cost of the 
O-D pair for selecting the cheaper paths 
set. In other words, δ sets the indifference 
band near minimum cost by specifying the 

threshold limit rsπ between the maximum 
cost path and minimum cost path. All paths 
that have cost less than rsπ  are assumed 
to be potentially attractive alternatives for 
drivers travelling on expensive paths (which 
has cost higher than rsπ ). The parameter 
δ is the input to the algorithm and needs 
to be decided before using this algorithm. 
Based on sensitivity analyses for the two test 
networks, the value of 0.15 and 0.2 for this 
parameter was found to yield good results 
(Fig. 3 and Fig. 4) for the SPSA and has been 
adopted in this study.
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5. Computational Experiments and 
Results

Computational experiments are done to 
compare the convergence performance of the 
SPSA with respect to SMPA, F-W and social 
pressure algorithms. The computational 
experiments consider the two versions of 
SMPA. The first version (labeled SMPA) 
updates the path set and equilibrates the 
O-D pairs based on the sequential manner 
(for details see Kumar and Peeta, 2010). 
The second version (labeled SMPA-hybrid) 
was devised by Kumar and Peeta (2013) 
based on the insights from the experimental 
work done by Kumar et al. (2012) where 
O-D pairs are equilibrated based on the 
sequential approach but path sets are updated 
for all the O-D pairs simultaneously. The 
computational experiments use the Anaheim 
and Borman corridor networks as the test 

networks. The Anaheim network in southern 
California consists of 416 nodes, 914 links, 
and 1406 O-D pairs with non-zero demand. 
The Borman Corridor network in northwest 
Indiana consists of 197 nodes, 460 links 
and 1681 O-D pairs with non-zero demand. 
The computational environment used is a 
Dell precision workstation with Intel Xeon 
processors (2.67 GHz) and 64-bit Windows 
7 operating system. The SPSA, SMPA, 
SMPA-hybrid, SPA and the F-W algorithm 
were coded in MATLAB and executed on 
the same computer. Some computationally 
intensive processes like updating f lows, 
costs and cost functions derivatives for paths 
and links was performed by using the MEX 
(MATLAB executable) files coded in C. 
The computational performances of the 
algorithms are compared by plotting the 
Ngap on the logarithmic scale versus the 
CPU time.
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Computational Results for the Anaheim Network
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The results of the computational experiment 
carried out for the Anaheim network are 
presented in Fig. 5. The performances of all 
the algorithms are similar in the initial stages 
but SMPA, SMPA-hybrid and SPSA perform 
better in the latter stages. The SMPA-hybrid 
and SPSA take about 9 seconds to reach the 

Ngap of 10-6 (convergence level adopted here) 
followed by SMPA taking about 22 seconds, 
in contrast to social pressure algorithm which 
takes about 155 seconds to reach the same 
convergence level. The F-W algorithm lags 
behind throughout the latter stages and failed 
to reach convergence even after 200 seconds.
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Computational Results for the Borman Corridor Network

The results of the computational experiment 
for the Borman Corridor Network are 
presented in Fig. 6. The performance of the 
SPSA along with SMPA and SMPA-hybrid 
overtakes that of the SPA in the early stages 
and consistently improves until convergence. 
The SPSA takes less than one-third of the 
computational time compared to the SPA to 
reach convergence (Ngap of 10-6). In this case 
also F-W algorithm lags behind in later stages 

and failed to reach convergence even after 
200 seconds. The performance of SPSA and 
SMPA are similar except near convergence 
where SPSA overtakes SMPA. The SMPA-
hybrid outperforms all and requires about 
6 seconds to reach the convergence. In 
addition, Figs. 5 and 6 suggest that for the 
test networks, SPSA, SMPA and SMPA-
hybrid show smoother convergence than 
SPA.
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Table 1
Sensitivity Analysis with Respect to Demand

D
em

an
d 

le
ve

l Convergence performance for Anaheim network

CPU time (seconds) for Convergence Number of iterations for convergence

SPA SMPA SMPA-
hybrid SPSA SPA SMPA SMPA-

hybrid SPSA

0.8 9.66 5.57 1.38 1.40 7 8 6 5

1 106.92 22.70 5.49 8.75 74 31 28 36

1.2 148.56 51.76 10.96 22.87 93 69 56 66

Table 2
Calibration of Optimal Parameters of SMPA for Anaheim Network

Sc
al

in
g 

fa
ct

or

CPU time (seconds) for Convergence

Inner 
iterations 
= 9

Inner 
iterations 
= 8

Inner 
iterations 
= 7

Inner 
iterations 
= 6

Inner 
iterations 
= 5

Inner 
iterations 
= 1

0.8 26.01 26.97 27.86 32.01
0.9 24.37 24.96 27.27 28.52
1 24.38 26.50 26.18 29.22 30.31 76.91
1.1 22.70 23.13 25.32 26.30 29.06 70.29
1.2 43.77 51.22 24.02 25.41 26.94 67.69
1.3 43.06 47.75 23.43 24.46 25.85 61.37
1.4 41.78 46.96 47.74 23.99 24.38 60.51
1.5 39.37 47.33 47.91 22.98 23.67 54.74
1.6 37.00 47.05 43.17 56.80 23.93 54.69
1.7 46.02 43.56 41.92 52.40 23.23 49.48
1.8 34.29 45.49 40.90 51.53 23.29 48.98
1.9 33.79 30.47 36.89 35.82 44.05 46.05
2 32.12 29.66 35.16 37.05 42.17 47.03
2.1 40.19 50.54 57.33 104.15 88.64 82.00

The sensitivity analysis was done to find the 
performance of the algorithms with change 
in congestion level by varying the level of 
demand. The three levels of demand namely 
0.8, 1.0 and 1.2 were tested for the Anaheim 
network. Here, demand level 1.0 correspond 

to the original demand and demand level 
0.8 and 1.2 were obtained by multiplying 
the O-D trip demand table by 0.8 and 1.2 
respectively. Table 1 shows the result of 
sensitivity analysis in terms of computational 
time and number of iteration required for the 
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convergence at different levels of demand. 
F-W algorithm is not included in this analysis 
because it failed to reach the convergence. 
The results of the sensitivity analysis show 
that the computational time (CPU time) 
as well as number of iterations required in 
reaching the convergence increases with 
the increase in congestion level for all 
the algorithms. In addition, the relative 
performances of the algorithms are similar 
to those observed in Fig. 5.

The superior performance of the SPSA 
compared to SPA and F-W algorithm can 
be attributed to the efficient utilization 
of the sensitivity of path costs relative to 
path f low in the form of slopes of the cost 
function in the f low update process and the 
transfer of f lows to multiple potential paths 
simultaneously. The SPA is insensitive to 
the slope of cost function. In addition, in it 
the f low is shifted to just one path having 
the minimum cost though there may be 
many paths having cost equal to or close to 
the minimum cost path for that O-D pair. 
This leads to a substantial increase in the 
cost of the current minimum cost path as 
a result of f low update process. Thereby, 
in the next iteration, one of the paths with 
a cost equal or close to that of this path 
becomes the minimum cost path. This 
results in the oscillation of f lows between 
the paths in the feasible set leading to an 
increase in the number of iterations to reach 
convergence. The comparatively similar 
convergence rates of the SPSA and the social 
pressure algorithms in the initial stages can 
be attributed to the computational cost of 
calculating the slopes of the cost functions 
in each iteration of the SPSA algorithm, 
though this is not particularly beneficial 
in the initial iterations due to the lesser 
number of efficient paths. In later stages, 
when more efficient paths are generated, 

this burden is more than compensated by 
the gain in efficiency accrued by the optimal 
f low transfer to multiple potential paths.

SMPA-hybrid exhibited better performance 
compared to SPSA but the later is easier 
to implement in practice and it more 
realistically represents path shift behavior 
of the drivers in the f low update process. 
Implementation of SMPA and SMPA-hybrid 
needs calibration of scaling factor and 
optimal number of inner iterations which has 
no upper bound. Table 2 shows partially the 
outcome of the computational exercise done 
for the calibration of these two parameters of 
SMPA for Anaheim network. The SMPA for 
Borman network as well as the SMPA-hybrid 
for both test networks exhibits similar trend 
and hence are not presented here for brevity 
of space. The CPU times corresponding 
to optimal values of scaling factor in each 
column of Table 2 are shown boldfaced. The 
results of the computational experiments 
indicate that the convergence characteristics 
of SMPA and SMPA-hybrid are very sensitive 
to these parameters (scaling factor and 
number of inner iterations) and the optimal 
values of these parameters vary from one 
net work to another. Therefore, their 
convergence performance are subjective 
and depends on how precisely the optimal 
values of these parameters are calibrated. 
For practice it may require several runs of 
the algorithm to determine optimal values of 
these parameters. On contrast, SPSA needs 
the calibration of only proximity parameter 
for implementation. But SPSA is not very 
sensitive to this parameter and which has 
the optimal value typically in the range of 
0.1 to 0.2. The value of 0.1 for this parameter 
has been found to yield satisfactory faster 
convergence rate for SPSA for several 
networks tested by the authors and can be 
used as the default value in the absence of 
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calibration procedure. Hence, SPSA can act 
as potential alternative for SMPA-hybrid 
for practice.

6. Concluding Comments

T h is st udy proposes a new solut ion 
algorithm labeled as the SPSA for solving 
the static user equilibrium traffic assignment 
problem. The SPSA uses the concept of path 
shift-propensity factor inheriting insights 
from the social pressure algorithm. The use 
of the path shift-propensity factors concept 
provides a behaviorally consistent rationale 
for the f low update process relative to the 
network users seeking better routes in the 
real world. In addition, it uses the sensitivity 
of path cost with respect to path f low for 
deciding the proportion of network users 
switching to alternative attractive routes. 
Hence, the SPSA is likely to give more 
realistic path f low solutions given that 
multiple path f low solutions exist for the 
UETAP. In addition it is easy to implement 
in practice.

Based on the Gauss-Siedel decomposition 
technique, SPSA equilibrates one O-D 
pair at a time sequentially and operates in 
the space of path f lows to achieve faster 
convergence. The sequential approach is 
likely to induce order bias in the solution 
space. In SPSA, this problem is tackled up 
to some extent by using the simultaneous 
path update technique. The f low update 
mechanism divides the set of feasible paths 
for an O-D pair into costlier and cheaper 
sets by calculating a threshold limit based on 
the maximum cost difference between the 
path costs (maximum path shift-propensity 
factors) and using the proximity parameter 
δ. It uses the slopes of the cost function in 
the f low update process to determine the 

move direction and shifts f low from the set 
of costlier paths to the set of cheaper paths 
between an O-D pair simultaneously. The 
step size for the move direction is obtained 
by a line search technique.

Computational experiments were performed 
for the Anaheim and Borman Corridor 
networks. They indicate that the SPSA along 
with SMPA-hybrid has a superior rate of 
convergence compared to the social pressure 
and F-W algorithms. The performance of the 
F-W algorithm lags behind in later stages and 
failed to reach convergence (Ngap of 10-6). 
All of the five algorithms exhibit a similar 
convergence rate in the initial stages, but 
SPSA, SMPA and SMPA-hybrid converges at 
a much faster rate in later stages and can be 
used for obtaining the UE solution for high 
convergence levels. SMPA-hybrid exhibited 
better convergence performance compared 
to SPSA. But SPSA represents the flow shift 
behavior more realistically in the flow update 
process and is easier to implement, and can 
act as a potential alternative for SMPA-
hybrid in practice.
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