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Abstract: According to the current practice, vertical alignment of a highway segment is usually 
selected by creating a profile showing the actual ground surface and selecting initial and final 
grades to minimize the overall cut and fill quantities. Those grades are connected together 
with a parabolic curve. However, in many highway construction or rehabilitation projects, the 
cost of cut may be substantially different from that of fill (e.g. in extremely hard soils where 
blasting is needed to cut the soil). In that case, an optimization process will be needed to 
minimize the overall cost of cut and fill rather than to minimize their quantities. This paper 
proposes a nonlinear optimization model to select optimum vertical curve parameters based on 
individual cost items of cut and fill. The parameters selected by the optimization model include 
the initial grade, the final grade, the station and elevation of the point of vertical curvature 
(PVC), and the station and elevation of the point of vertical tangency (PVT). The model is 
flexible to include any design constraints for particular design problems. Different application 
examples are provided using the Evolutionary Algorithm in Microsoft Excel’s Solver add-in. 
The application examples validated the model and demonstrated its advantage of minimizing 
the overall cost rather than minimizing the overall volume of cut and fill quantities.

Keywords: highway profiles, highway vertical alignment, nonlinear optimization, highway 
rehabilitation.
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1. Introduction

Highway design is a complex process where 
conflicting design requirements should be 
satisfied at the same time (Dell ’Acqua, 
2012). A fundamental element in highway 
design is the design of vertical curves, which 
are used to connect initial grades, g1, with 
final grades, g2, as shown in Fig. 1. Highway 
vertical curves are usually parabolic with 
a constant rate-of-change of grade that 
changes the grade from g1 to g2 (AASHTO, 
2010). In order to evaluate an existing 
highway vertical curve for rehabilitation 
projects, the following data will be needed 
(as shown in Fig. 1): 

•	 The initial grade, g1;
•	 The final grade, g2;
•	 The location (station) of the point of 

vertical curvature (PVC), x1;
•	 The location (station) of the point of 

vertical tangency (PVT), x2;
•	 The elevation of the point of vertical 

curvature (PVC), y1; and 
•	 The elevation of the point of vertical 

tangency (PVT), y2.

T h is paper ex a m i nes t he i mpac t of 
different risk factors that may contribute 
to rollover collisions in order to help develop 
countermeasures that limit them. The 
factors investigated include driver-related, 
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vehicle-related, environmental-related, and 
roadway-related factors. To avoid the bias 
that may be caused by interactions among 
different drivers, this analysis focuses on 

rollover related to single-vehicle collisions 
so that the behavior of the driver of the 
collided vehicle can be analyzed more 
effectively.

PVC
PVT

PVI

y1

y2g1

g2

x1

x2

Start of the profile

Fig. 1. 
Characteristics of a Highway Vertical Curve

The above data may not always be available 
due to soil consolidation and prior resurfacing 
and maintenance projects for the highway. 
Based on that, the elevation of the highway 
centerline is usually measured at different 
stations and the resulting profile usually has 
an irregular shape that should be fitted into a 
highway vertical alignment by visually fitting 
two straight lines and a parabolic curve to the 
profile. This visual method is time consuming 
and may not be adequately accurate.

To overcome the limitation of the above 
visual method, an analytical method was 
developed (Easa et al., 1998) to accomplish 
two simultaneous tasks:
•	 To ident i f y the star t and end of 

linear (tangent) and curved segments 
automatically based on the trend of 
profile data; and

•	 To sequentially fit straight lines to the 
linear segments and clamped cubic 
spline functions to the curved segments. 

The limitation of the above method is that it 
used third-degree spline lines (which have 
varying curvature and are more complex 
to analyze) to simulate a second - degree 
parabolic curve. The spline lines were used 
due to the fact that fitting vertical curves to 
the profile data using regression analysis 
(which by nature has no constraints) would 
not normally satisfy the constraints related 
to the connection between the tangents and 
the parabolic curve. 

Another method was developed to present 
a linear optimization model (Easa, 1999), 
which allowed the use of constraints for 
fitting straight lines and parabolic curves to 
highway profile data. In that case both the 
tangents and parabolic curves were fitted 
simultaneously to the profile data, thus 
producing a better alignment than that of 
the sequential fitting. The only limitation in 
that method was that it considered locations 
(stations) of the start and end points of the 
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parabolic curve (x1 and x2) to be known. 
That assumption was essential for linear 
optimization model to l imit decision 
variables to four variables (g1, g2, y1 and y2) 
subject to linear constraints. That model 
was later extended (Easa, 2008) by utilizing 
a mathematical trick involving three binary 
variables to model the discontinuities at the 
start and end of the vertical curve, which 
ultimately resulted in convergence to the 
guaranteed globally optimum solution.

Another solution was introduced (Hu et al., 
2004) to improve the above method by using 
least-square method instead of the linear 
programming optimization with assuming 
the start and end points of the parabolic 
curve (x1 and x2) to be decision variables; 
and therefore there would be six decision 
variables in total (g1, g2, y1, y2, x1 and x2).

In all the above methods, the objective 
function was to minimize the overal l 
volume of cut and fill. However, in many 
situations, the unit cost of cut may be 
substantially different from the unit cost 
of fill. An example situation is where the 
soil is extremely hard so that blasting is 
needed to cut the soil. Based on that, this 
paper proposes a new nonlinear optimization 
model that considers different unit costs 
for cut and fill. In this case, the objective 
function is to minimize the overall cost of cut 
and fill, which is calculated as the volumes 
of cut and fill multiplied by the unit costs of 
cut and fill, respectively. Several application 
examples are provided to illustrate how the 
model is used in different situations.

2. Vertical Curve Equations 

This given that g1 and g2 are the initial and 
final grades, respectively (positive for 
upgrade and negative for downgrade), and 

according to design guides (A ASHTO, 
2010), the algebraic difference in grades, 
A, for a vertical curve is given as Eq. (1):

A=g2 – g1 (1)

If the length of the vertical curve is L, the 
rate of change of grade, r, is Eq. (2):

r = A / L (2)

The inverse of the r value given above is the 
K value, which is the length of the vertical 
curve needed to effect 1% change in the 
slope of the vertical curve. Since highway 
vertical curves are usually equal-tangent, the 
point of vertical curvature (PVC) and the 
point of vertical tangency (PVT) are both 
located at equal distances from the point of 
vertical intersection (PVI). Assuming that 
the origin point is located at PVC, the offset, 
Y, of a point at distance x is given by Eq. (3):

Y = rx2/2 (3)

The corresponding elevation, y, is given 
by Eq. (4):

y = g1x + (rx2/2) (4)

By differentiating Eq. (4) with respect to 
x and equating dy/dx to zero, the location 
of the highest (or lowest) point, xhl, can be 
shown to be equal to (-g1/r).

3. Optimization Model

For a highway profile consisting of two 
grades connected by a vertical parabolic 
curve, the station and elevation of any point, 
i, on the profile (xi and yi) can be computed 
from the coordinates of PVC and PVT that 
are (x1, y1) and (x2, y2), respectively. It is 
required to fit two tangents (grades) and a 
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parabolic curve to the profile data. The range 
of the stations of the start and end of the 
parabolic curve (x1, x2) can be specified based 
on the shape of the profile. The number of 
data points of the initial grade, the parabolic 
curve, and the final grade are denoted by 
K, L, and M, respectively with total number 
N of data points. The exact locations of 
start and end points, (x1, y1) and (x2, y2), and 
the initial and final grades, g1 and g2, are all 
decision variables that need to be computed. 
For any point, i, the difference between the 
estimated and observed elevations can be 
given by Eq. (5):

di = yei – yoi (5)

where yei is the estimated elevation of point 
i and yoi is the observed elevation of point i.

For the initial grade, the estimated elevation, 
yei, of a point that has station xi is given by 
Eq. (6):

yei = y1 - g1(x1 – xi);   xi ≤ x2 (6)

For the parabolic curve, the offset and the 
corresponding curve elevation of a point (xi, 
yi), based on Eq. (3) and Eq. (4), are given 
by Eq. (7) and Eq. (8):

Yi = r(xi – x1)
2 / 2 (7)

yei = y1 + g1(xi – x1) + (g2 – g1)(xi – x1)
2 / 2(x2 

– x1);  x1 ≤ xi ≤ x2     (8)

For the final grade, the elevation, yei, of a 
point that has station xi is given by Eq. (9):

yei = y2 + g2(xi – x2); xi ≥  x1 (9)

If the elevations of the first and final points 
on the profile are both constraints, and 
to ensure linearity of the initial and final 

grades, the elevations of PVC and PVT may 
both be calculated according to the following 
equations (Eq. (10) and Eq. (11)):

y1 = yo1 + g1(x1) (10)

y2 = yoN + g2(xoN – x2) (11)

In the above equation, the parameter yo1 is 
the elevation of the first point on the profile, 
and the parameters xoN and yoN are the station 
and elevation of the last point on the profile.

The positive values for the difference, di, 
indicate fill sections, and the negative values 
indicate cut sections. Let the variables w, sf, 
and sc denote the road width, side slope at 
fill sections, and side slope at cut sections, 
respectively. Based on that, the total fill 
and cut volumes are calculated using the 
following equations (where Vf is the total 
fill volume and Vc is the total cut volume) 
(Eq. (12) and Eq. (13)):

 (12)

 (13)

If the unit costs of fill and cut are Cf and Cc, 
respectively, the total costs of fill and cut 
are calculated using the following equations 
(where TCf is the total cost of fill and TCc is 
the total cost of cut) (Eq. (14) and Eq. (15)):

 (14)

 (15)

The objective function is to minimize the 
sum of the total cost of fill and total cost of 
cut (Eq. (16)):

 (16)
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To ensure an equal-tangent vertical curve, 
the following constraint must be added (Eq. 
(17)):

g1(L/2) + g2(L/2) = y2 – y1 (17)

Knowing that L = x2 – x1 and by re-arranging 
the Eq. (17), it can be reduced to Eq. (18):

2(y2 – y1) – (g1 + g2)(x2 – x1) = 0 (18)

The model is also subject to the following 
constraints (Eq. (19) and Eq. (20)):

x1 > xo1 (19)

x2 < xoN (20)

In the above equation, the parameter xo1 is 
the station of the first point on the profile. 
To ensure adequate sight distance on the 
designed vertical curve, the following 
constraint must also be met (Eq. (21)):

 (21)

In the above equation, the parameter Kdesign 
is the minimum K value required for the 
vertical curve to ensure adequate sight 
distance, which depends on the design 
speed, as given by geometric design guides 
(e.g. AASHTO, 2010). To ensure that all 
decision variables have non-negative values, 
g1 and g2 may be replaced by two non-negative 
variables (Eq. (22) and Eq. (23)), such that:

g1 = g11 - g12 (22)

g2 = g21 - g22 (23)

Eqs. (14 -23) represent the nonl inear 
opt i m i z at ion model ,  wh ic h may be 
solved using any commercially available 
optimization software. More constraints 

may be added for particular vertical curve 
problems such as maintaining a certain 
height above an underpass or below an 
overpass or maintaining a certain elevation 
at a certain station for intersection with 
another roadway.

4. Application Examples

A hy pot het ica l ex a mple is prov ided 
to va l idate the developed non l inear 
optimization model. In the example, the 
given prof i le data ty pical ly represent 
that shown in Fig. 2 without any error; 
and therefore the optimization value is 
expected to be zero. The elevations at 
different stations were calculated based on 
the parameters shown in Table 1.  

T he e x a mple w a s solved u s i ng t he 
Evolutionar y A lgorithm in Microsoft 
Excel’s Solver add-in. The decision variables 
calculated by the software were found to 
precisely match those shown in Table 1 with 
the optimization value found to equal zero, 
which validates the developed model.

The same example was solved again after the 
profile data have been deliberately altered to 
reflect a real-world situation where vertical 
curve elevations are changed as a result of 
soil consolidation and prior resurfacing 
projects. The example was once solved 
with assuming the unit costs of cut and fill 
to be $50/m3 and $30/m3, respectively. In 
that case, the feasible solution found by 
the optimization model calculated the 
quantities of cut and fill as 1.31 m3 and 2.77 
m3, respectively. The total cost of cut and 
fill was $148.67. The example was solved 
again with assuming an extreme case of 
high unit cost of cut at $3000/m3 with 
keeping the unit cost of fill as $30/m3. In 
that case, the feasible solution was different 
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and the quantities of cut and fill were 0.02 
m3 and 1.90 m3, respectively, with total cost 
of cut and fill $1930.57. This substantial 
difference in the cut volume between the 
two examples is a result of the high unit 
cost of cut in the latter example, which 
demonstrates the advantage of using the 
developed model to minimize the overall 

cost rather than minimizing the overall 
cut and fill volumes. This objective is 
different from the objective of the previously 
developed models discussed in this paper 
that focused on minimizing the overall cut 
and fill volume. The profiles of the original 
data and the two examples are shown in Fig. 
3 for comparison purpose.

Fig. 2. 
Profile of the Validation Example

Table 1 
Design Parameters and Decision Variables for the Validation Example
Parameter Value
Design parameters:
  Width of roadbed (W) 14
  Fill side slope 3
  Cut side slope 1

Decision variables:
  Initial grade (g1) 2.5%
  Final grade (g2) -0.9%
  Station of PVC (x1) 140
  Station of PVT (x2) 340
  Elevation of PVC (y1) 4.947
  Elevation of PVT (y2) 6.547
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Fig. 3. 
Profiles of the Original Data and the Two Application Examples

5. Conclusion

In this paper, a nonlinear optimization model 
was developed to select optimum vertical 
curve parameters for rehabilitation projects 
based on individual cut and fill cost items. 
The objective of the developed optimization 
model is to minimize the overall cut and fill 
costs rather than minimizing their overall 
quantities. The parameters selected by the 
optimization model include the initial grade, 
the final grade, the station and elevation 
of the point of vertical curvature (PVC), 
and the station and elevation of the point of 
vertical tangency (PVT). The model has the 
flexibility to include any constraints needed 
for particular design problems such as setting 

certain stations at certain elevations. The 
model also has the f lexibility to include 
more specif ic cost itemization such as 
selecting different unit costs for different cut 
depths. Different application examples were 
provided using the Evolutionary Algorithm 
in Microsoft Excel’s Solver add-in, which 
validated the model and demonstrated its 
advantage of minimizing the overall cost 
rather than minimizing the overall cut 
and fill volumes. Although the model is 
designed for rehabilitation projects with a 
single parabolic curve, it can be extended 
to optimize more-complex profiles with 
multiple curves. The developed model can 
also be applied for designing new profiles by 
setting the appropriate design constraints.
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